

Key Generation for Sensitive But Unclassified Communications

A Project Report

Submitted to the Faculty

of the

UNITED STATES COAST GUARD ACADEMY

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

in

Electrical Engineering

by

__

Joshua Gaidos

__
Rebecca Doyle

Projects in Electrical and Computer Engineering

25 April 2008

Reviewed By:

__
Mr. Herb Holland, Project Advisor

__
LCDR Daniel K. Pickles, Class Coordinator

__
Professor Keith C. Gross, Chief, Electrical & Computer Engineering Section

Abstract

The Office of Command, Control, Communications, Computers & Information

Technology (CG-6) at Coast Guard Headquarters identified a need for a program to secure

Sensitive But Unclassified (SBU) Data Communications between Coast Guard assets. Through

meeting with the project sponsor from CG-6, it was determined that the best solution to meet the

needs specified by CG-6 was to create a software program capable of generating a random

number. Since the program would be used by the Coast Guard and the federal government, it

would have to meet the federal standards established by the National Institute of Standards and

Technology (NIST). The program was designed and built with the random number generator in

the CryptoSys™ API, designed to pass NIST certification. The program generated a user-

interface that accepted limited input and sent the output to the screen with the option to store the

data in a separate text file. The program was delivered to CG-6 for submittal to the NIST

certification process and the outcome of the certification is pending.

Table of Contents

Introduction page 1

Background page 1

Objective page 2

System Design page 2

Results page 2

Conclusions page 4

References page 4

Bibliography page 5

Appendices page 5

Appendix A: Business Case page A-1

Appendix B: Project Plan page B-1

Appendix C: Support Plan page C-1

Appendix D: Functional Requirements page D-1

Appendix E: Testing Plan page E-1

Appendix F: Design Specifications page F-1

Appendix G: GUI Source Code page G-1

1

Introduction

The Coast Guard has a need to improve the security of data transmission and radio

communications. The Coast Guard Office of Command, Control, Communications, Computers

& Information Technology (CG-6) and the Telecommunications and Information Systems

Command (TISCOM) identified the fleet-wide use of both the wireless communication devices

on 47’ small boats and the Encrypted Automatic Identification System (EAIS) as two resources

in need of increased security. Neither system is currently secured well enough to provide

operational security, protect personal privacy, or keep the Coast Guard in compliance with

federal standards for transmitting Sensitive But Unclassified (SBU) information as required by

the National Institute of Standards and Technology (NIST). The necessary encryption hardware

is already in place and is only lacking the appropriate encryption key. The systems can be

secured if the data is encrypted using the Advanced Encryption Standard (AES) algorithms

inherent in the hardware and an approved cryptographic key. AES is widely published and

approved by NIST, but the Coast Guard lacks the appropriate software for generating an

approved cryptographic key, see information contained in Appendix A, the Business Case.

 A program has been developed to randomly generate a key to encrypt and decrypt data

with AES. The key must meet three requirements: it must be of a user-specified length, must be

available to copy-and-paste data in the GUI, and the data must be transferrable once saved to a

text file. The system that meets these requirements will provide a key whose implementation

will greatly benefit the Coast Guard. It will allow current cryptographic hardware to provide

operational security, personal privacy, and bring the Coast Guard into compliance with federal

2

standards for transmitting sensitive but unclassified information. Overall, Coast Guard

communications will be more secure as a result of an effective random number generator.

 This paper will cover the entirety of the project, starting with background information on

why the Coast Guard needs a key for data encryption rather than merely transmitting the

information as unclassified information. To do so, we will return to the root of the need by

explaining the type of data involved and that Sensitive But Unclassified (SBU) Information is a

different level of classification and is ranked in between Unclassified and Classified. Further

explanation of cryptographic keys and how they function will also be covered, as that is

necessary to understand the design decisions of the project. The paper will also outline the

objectives, requirements, and the method of approach for the project which all had an effect upon

the design process throughout the course of the year. Finally, once the basis of the project and

the decision-making process is covered, the paper will explain the current system design and

what characteristics meet specific design requirements provided to us by our project sponsor.

Background

The Coast Guard needs to wirelessly transmit SBU information between vessels such that

the data is protected appropriately for the security level of the information. SBU information is a

classification level between Unclassified and Confidential. NIST has not yet published a set of

requirements establishing the necessary security measures for this unique classification level.

The general content of SBU information is personal information and not information that could

potentially impact Coast Guard operations. Examples include phone numbers, personal medical

information, and details of ongoing missions. As these sensitive communications are not vital

enough to the Coast Guard’s activities to be considered classified, keys from the National

Security Agency (NSA) cannot be used.

3

Currently, the Coast Guard has no method to appropriately secure the transmission of

SBU data, and instead is transmitting this information insecurely, a method appropriate for

unclassified data, which is one classification level below SBU. This is unacceptable because it

violates the Coast Guard policy that information ranked at any classification level must at least

be encrypted at that level. Data can be treated as if it were in a higher classification level,

however, performing more work than is necessary is discouraged. Since SBU information

cannot be treated as Unclassified and should not be treated like Classified information, the Coast

Guard needs a method of encryption in-between the two levels. The hardware used for SBU

communications in the Coast Guard uses an AES (Advanced Encryption Standard) algorithm.

AES is a multi-round block encryption algorithm published by NIST and approved for

encrypting data up to the Top Secret level. It operates on and manipulates large chunks of data

at once, initiated by a key. [1] An electronic key works similarly to a physical key such as for a

pin-tumbler lock in the physical security world. The key makes the encrypted data unreadable to

users without the same key. Each key, made up of a stream of bits, creates a unique encryption

pattern so that no two sessions are the same unless the same key is used. [2] There is not

currently a NIST-approved software program available to the Coast Guard that will create a

Random Number Generator (RNG) to meet this requirement.

An RNG is necessary for the primary reasons that: 1) It is more convenient to have the

number generated by a computer, and 2) Computers cannot create random numbers without an

RNG because computers are finite-state machines that are deterministic by nature. Due to the

deterministic nature of computers, the output is a direct function of the input. As computers are

deterministic, if the input-output function can be determined, outside users can reverse the

encryption process, thereby gaining full access to all of the encrypted data. [5] To avoid this

4

downfall, the key must be hard-to-guess. The way to do this on a deterministic machine is to

make the function appear as random as possible. [6] This is accomplished using deterministic

RNGs. As there are many ways to generate random numbers but only a few are good enough for

cryptography, NIST lists approved generators in Appendix C to FIPS 140-2. [7]

NIST is part of the federal government and acts as a national standards body that

prescribes requirements for such applications as both AES and key generation. As a federal

agency, the Coast Guard is required to adhere to these cryptographic security standards. Federal

Information Processing Standards Publication 140-2, hereafter referred to as FIPS 140-2, is one

encryption standard document published by NIST that contains rules for the generation of keys.

[3] A key must be chosen using a deterministic Random Number Generator (RNG) that meets

NIST standards for randomness suitable for government encryption. [4]

There are two methods of SBU communication in the Coast Guard that will benefit from

this problem solution: EAIS and the wireless crew communication systems on small boats. The

EAIS system is the Encrypted Automatic Identification System which is used for vessel traffic

identification. Vessels update their information to include destination location and time of

arrival, previous port of call, and other data such as course, speed, cargo, what business owns the

vessel, and so on. For the Coast Guard, the ability to receive this data but to not transmit vessel

data that should remain private is a concern. Currently, the Coast Guard is using a publicly

distributed program to generate the random key for encryption. There are two problems inherent

in using such a program: First, the program was not approved by NIST and therefore does not

meet the organization’s encryption standards, and second, there is no way to examine the source

code of the program to ensure its security.

5

While EAIS, which is used by all ships in the Coast Guard, has a poorly secured method

of encrypting its data for transmission, the wireless communication devices used by small boat

crews have no system in place to secure their transmissions. [8] As a result, these radio signals

are broadcast for everyone within line-of-sight to hear with standard radios. These SBU

communications can be overheard, intercepted, tracked, recorded, and duplicated, which may be

acceptable for Unclassified Communications, which is what AIS is primarily used for, but for the

purposes of SBU Communications, it is unacceptable for an outside entity to have free access to

the transmitted data. This is due to the fact the SBU Information is at a level above Unclassified

Information and consequently requires a higher level than what is available for other

Unclassified Information. None of these actions are acceptable for sensitive communications,

hence the need for encryption and a random key generation program.

In cryptography there are many programs available that use various methods for creating

random numbers. A variety of NIST-approved modules exist, but they are all proprietary and

expensive. The encryption method, AES, was adopted by NIST a few years ago and has been

very widely used ever since. As a result, its functionality and performance is trustworthy. AES

did not create any problems in the development of the project.

Objective

The objective of this project was to select or create a deterministic random number

generator which meets the requirements of FIPS 140-2. It must be contained in an executable

that generates a Graphical User Interface (GUI) and runs on an updated Windows XP platform,

nominally the Coast Guard Standard Workstation III. Furthermore, the program must accept a

variety of key lengths from 64 bits up to 4096 bits, a length suitable for encryption purposes well

into the future. The program will accept key lengths that are multiples of 8 because encryption

6

algorithms run on byte-sized keys, and byte-sized keys contain 8 bits in one byte which is the

reason that the key must be a multiple of 8. The output must be in hexadecimal format and have

the following attributes: 1. There must be a text box for copy-and-paste functionality and 2.

There must be the option to generate a text file for archiving and transmitting. Additionally, the

distribution of the key across the fleet is currently outside the scope of this project and is not one

of our principle concerns in submitting our final product to our sponsor. It will be addressed by

CG-6 due to the secure Coast Guard infrastructure already in place.

 The development, design, implementation, and testing of the program are diagrammed

below in Figure 1. The top half of the flow chart shows the work being done solely at the Coast

Guard Academy. The bottom half relies on field testing by the sponsor during which

modifications will be made to the program before final delivery.

Figure 1: Project Flow Chart

The second semester’s efforts were be concerned with interfacing the GUI with the

NIST-approved RNG and debugging the process.

7

System Design

The random number generator and a programming language for building the user

interface have been selected. CryptoSys™ API was selected as the best solution because it was

already written, was programmed to comply with NIST standards, and was a low-cost solution

that met all of the needs. [1] C# was chosen as the programming language for the project for

three reasons. First, there were a variety of visual templates available. Second, the developers

were familiar with C++, which is closely related to C#. Third, the C# components within the

CryptoSys™ API were extremely easy to manage.

The sponsor requested that the user interface to the key generation program be a user-

friendly GUI. The GUI would display the key and upon further prompting output a text file to

store the string of hexadecimal digits. Primarily, the focus was to package the RNG module in a

user-friendly package to meet the needs of the Coast Guard. Besides being intuitive, the GUI

eliminates user-error in the input. If the user entered a number to specify the length of the key

that was outside of the allowable range, the program would default to the nearest acceptable

value. Likewise, if the user entered anything but a multiple of eight, the GUI would round down

to the next multiple. Figure 2 shows the template developed in negotiation with the sponsor.

8

Figure 2: Template Design for the GUI

Acceptable key lengths were between 64 and 4096 bits. The AES algorithm accepts a

128 bit hexadecimal key. As the future applications of the program within the Coast Guard

cannot be anticipated, the program must continue to work as key lengths change and grow in the

future. In this initial design, once a key length was entered, the program generated a key when

the user clicked on the “Generate Key” button. Until a key was generated, all buttons other than

key length and key generation were disabled. Likewise, the program could not output the key to

a separate text file unless the user clicked on the “Generate Text File” button. This would trigger

a “Save As” dialog box for the user to store the key within a text file. The output would always

appear in the GUI and would be available for copying and pasting, even though the user may not

choose to save the key to a text file. The GUI Source Code is contained in Appendix G.

The input-output relationships are shown in the data flow diagram in Figure 3.

9

Figure 3: Informational flow through the project.

 The initial GUI design was quickly implemented with the CryptoSys™ API. Throughout

the development of the program, project requirements were added that influenced the direction of

the GUI. The first GUI design simply displayed a random number of a user-specified length.

The sponsor then requested that the GUI encrypt the key with a symmetric algorithm, see

information contained in AppendixB on the Project Plan. As the CryptoSys™ API contained an

implementation of the AES algorithm, encryption was quickly added to the program.

After this change to the requirements, instead of merely displaying a single set of

hexadecimal characters, the GUI now displayed three sets of hexadecimal characters: the key

under AES encryption that would be transmitted, the encryption key which locked the originally

generated key, and an initialization vector to allow AES to implement Cipher Block Chaining

(CBC). AES is a secure algorithm, but it will encrypt identical blocks of data to the same

encrypted state. In order to make all identical blocks from the original key encrypt to a different

encrypted state, the option for CBC was chosen in CryptoSys™ API. CBC links adjacent blocks

of data entering the AES algorithm so that no two adjacent identical sets are encrypted to the

same result.

 Finally, the sponsor requested that the GUI also decrypt the keys it generated the total

requirements are listed in Appendix D, the Functional Requirements. AES is a symmetric key

10

algorithm, so decryption could be accomplished by running the encrypted key back through the

encryption algorithm. This became the final design of the GUI. Below in Figure 4 is the current

GUI image. The GUI has two tabs to select functions pertaining solely to generating a key and

encrypting it or solely to decrypting a key. Within the encryption tab are text boxes for the

encrypted key to be sent out to Coast Guard units (Key For Transmission), the encryption key

that locked the original key generated by the GUI (Encryption Key), and the initialization vector

for implementing CBC (Initialization Value). Within the decryption tab are text boxes for the

decrypted key to be typed into a ship’s radio system (Key For Device Input), the key used to

unlock the encrypted key (Key to Unlock Transmission), and the initialization vector used for

CBC (Initialization Value).

Figure 4 – Current GUI images

11

Results

The project was successful in meeting the objectives requested by the sponsor. A

program was finalized that managed to create a random number of a user-specified length, and

that number was then able to be encrypted and decrypted for distribution purposes. Minor

difficulties were encountered in the design and construction process, however were overcome in

a short time so that the completion date of the GUI was not affected. CryptoSys API performed

as expected and was a satisfactory selection.

In the end, two products were ready for delivery to TISCOM: the GUI for generating,

encrypting, and decrypting random hexadecimal keys and the pertinent supporting

documentation to allow for future work on the project. Following a test plan, contained in

Appendix E, the program was found to contain no bugs or perform unexpected actions. The

Design Specifications are found in Appendix F.

Prior to implementation in the Coast Guard, the GUI is required to undergo the FIPS

Certification Process which is extremely time consuming and expensive. The process is too

expensive for the Coast Guard Academy Electrical Engineering section to support, and there is

not enough time for a cadet or a faculty member to pursue the certification of this program see

the Support Plan in Appendix C for more information. Upon discussion with the project advisor

and sponsor, it was decided that CG-6 and TISCOM would prepare the necessary documentation

and submit the program to NIST for approval.

Conclusions

The Coast Guard needed a random number generator whose output would be used in the

implementation of cryptography for EAIS and small boat internal communication. An RNG was

necessary to provide operational security, protect personal privacy, and keep the Coast Guard in

12

compliance with NIST standards for SBU communications. The GUI that was the final product

of this project allows the Coast Guard to meet all of its requisite needs. The GUI ensures reliable

program execution while limiting user-induced mistakes. CrytoSys™ API was the core

component of the program.

Work accomplished during the Fall semester was concerned with two tasks: determining

how to generate a random number and creating a design that uses this method. Both of these

goals were accomplished successfully through a thorough study of available cryptographic

packages. Spring Semester tasks were primarily focused on acquiring the API module,

developing and testing the GUI, and finally, a package was delivered to our sponsor, CG-6, for

FIPS certification and eventual distribution throughout the Coast Guard.

References

[1] Trappe, Wade and Lawrence Washington. Introduction to Cryptography with Coding

Theory. Upper Saddle River, NJ: Prentice Hall, 2006.

[2] Schneier, Bruce. Applied Cryptography: Protocols, Algorithms, and Source Code in C.

New York: John Wiley & Sons, Inc., 1996.

[3] United States. Department of Commerce. Federal Information Processing Standards

Publication 140-2: Security Requirements for Cryptographic Modules. Washington: GPO,

2001.

[4] Keller, Sharon. NIST-Recommended Random Number Generator Based on ANSI X9.31

Appendix A.2.4 Using the 3-Key Triple DES and AES Algorithms. National Institute of

Standards and Technology, 2005.

[5] Soto, Juan. Statistical Testing of Random Number Generators. Gaithersburg, Maryland:

National Institute for Standards and Technology, 2000.

13

[6] Hall, C. and J. Kelsey and B. Schneier. Cryptanalytic Attacks on Pseudorandom Number

Generators. Fast Software Encryption, Fifth International Workshop Proceedings (March

1998), Springer-Verlag, 1998, pp. 168-188.

[7] Walton, Jeffrey. “A Survey of Pseudo Random Number Generators.” www.codeproject.com.

September 13, 2007. September 17, 2007.

[8] “Automatic Identification System (AIS).” September 12, 2007. <http://www.l-

3ar.com/PDF_Files/MAR002.pdf>.

14

Bibliography

Chefranov, A.G., T.A. Mazurova. “Pseudo-Random Number Generator RC4 Period

Improvement.” Automation, Quality and Testing, Robotics. 2(2006): 38-41.

Cooper, Simon and Landon Noll. LavaRnd. 27 Sept. 2007. LavaRnd, 2003:

http://www.lavarnd.org/index.html

Gutterman, Z., B. Pinkas, T. Reinman. “Analysis of the Linux Random Number Generator.”

Security and Privacy. 2006: 15.

Koga, H. “A new class of variable-length uniform random number generators and their

asymptotic properties.” Information Theory. 2002: 405.

L’Ecuyer, P. “Uniform Random Number Generators.” Simulation Conference Proceedings.

1(1998): 97-104.

L’Ecuyer, P. “Software for uniform random number generation: distinguishing the good and the

bad.” Simulation Conference. 2(2001): 95-105.

“Random “Random Number Generator Algorithm in CryptoSys Products.” www.cryptosys.net.

September 13, 2007. September 17, 2007. <http://www.cryptosys.net/rng_algorithms.html>.

“Security Testing and Matrices.” Nist.gov. September 10, 2007. September 12, 2007.

<http://csrc.nist.gov/groups/STM/index.html>.

Appendices

Appendix A: Business Case

Appendix B: Project Plan

Appendix C: Support Plan

Appendix D: Functional Requirements

Appendix E: Test Plan

15

Appendix F: Design Specifications

Appendix G: GUI Source Code

A-1

Appendix A: Business Case

1/c Becky Doyle and 1/c Josh Gaidos

Key Generation for Sensitive But Unclassified Communications

Business Case

Needs Statement

Design and create a user-friendly key generation program that is FIPS 140-2 compliant. It
must output a key of variable length between 128 and 256-bits, and it must do so for a variety
of output methods.

Objectives Statement

Our two main objectives are to evaluate current key generators and develop an approved key
generator. A secondary goal is to develop key distribution policies.

Cost Benefit Analysis

The purpose of the project is to create a program which will allow us to implement secure
communications using the existing infrastructure. The need for this project arose due to the
challenges of secure communications in the Coast Guard in conjunction with the
implementation of new government standards in March 2007. Two problems with secure
communications currently facing the Coast Guard are unsecured transmissions during
wireless crew communications and the use of a key generator found on a public website to
encrypt the AIS GPS.. The costs associated with this project are similar to those associated
with any Coast Guard-wide implementation. The widespread changes will be costly in terms
of building human capital and integrating the program into existing infrastructure. However,
the costs are outweighed by the benefits which include: confidentiality, data integrity,
authentication, authorization, and non-repudiation. The main risk of this project is the
implementation of poor cryptography for the Coast Guard. Poor cryptography leads to a false
sense of security, and could potentially result in a larger liability than currently exists.

B-1

Appendix B: Project Plan

Key Generation for Sensitive
But Unclassified Communications

PROJECT PLAN
1/c Joshua Gaidos and 1/c Rebecca Doyle

09 October 2007
1. INTRODUCTION

The purpose of the Project Management Plan is to provide the Project Team Members
with a more definitive structure for how to pursue the project. The plan highlights the project’s
goals and background, the roles of all persons involved in the project, a breakdown of all of the
products and tasks of the project and how they are inter-related. Also a key part of the Project
Management Plan is the schedule of due dates and for completion of tasks and other deliverables
pertaining to the project. Only parts relating to the project will be included in the Project
Management Plan.

1.1 Project Description
This project evolved from the Coast Guard’s need for more secure communications,

specifically, a need for increased security in transmitting information over both wireless crew
communications devices on Small Boats and the fleet-wide Encrypted Automatic Identification
System (EAIS). This can be done if encryption could be performed using an advanced and
approved set of standards for data encryption called the Advanced Encryption Standard (AES).
While AES is currently usable, there is one important part that the Coast Guard does not have, a
way to “lock” the encryption so that only the intended recipient with the correct “key” may
“unlock” and read the data. Therefore, the desired result for this project is a computer program
that randomly creates a key to encrypt and decrypt data with AES. The program must be very
user-friendly, allowing them to set requirements for the new key, and to copy-and-paste the
completed product. The development and implementation of this system will greatly benefit the
Coast Guard for its value in effectively securing data for transmission. It will make Coast Guard
communications more secure and hence more reliable, trustworthy, and cost-effective.

1.2 Project Background
The Coast Guard needs to transmit Sensitive But Unclassified (SBU) information

wirelessly within and between vessels. SBU information is information which should not be
freely distributed to the public but does not require a government classification and for example
includes phone numbers, medical information, and details of the operational environment. AES
is a multi-round block encryption algorithm which operates on large chunks of text at once and
performs several operations multiple times.

B-2

In computer security, a key works in the same way a key works with a pin-tumbler lock
in the physical security world. A hard to guess or duplicate key is chosen which makes the
securing process unique for that specific key.

AES is at its most secure when implemented in accordance with FIPS 140-2, a set of
standards for encryption. Secure keys must be difficult to guess or predict, which is done by
creating an algorithm which comes as close as possible to making truly random numbers.

There are two Coast Guard systems which our project will directly benefit: EAIS and the
wireless crew communication systems on Small Boats. In regards to EAIS, this project will
improve the current security because the Coast Guard is presently using a program to generate a
random key that is available to the general public. Two problems due to using a public program
such as this one: 1. There is no way to look at the source code of the program to ensure its
security and 2. The program does not meet the encryption standards.

While EAIS has poor security for transmitting data, the wireless communication devices
used by small-boat crews in the Coast Guard do not even have a system to protect their
transmissions. As a result, these transmissions can currently be overheard, intercepted, tracked,
recorded, duplicated, and faked. None of these actions are acceptable for a secure
communication system.

1.3 References

N/A.

2. ROLES AND RESPONSIBILITIES

• Project Sponsor: LT Lars McCarter at CG-62/CG-64
• Project Advisor: Prof Herb Holland
• Project Team Members: 1/c Joshua Gaidos and 1/c Rebecca Doyle

Team members are responsible for keeping the Project Advisor informed of all progress, set
backs, and goals. Team members will keep the Project Sponsor aware of progress and initiate
communication to clarify goals, needs, and requirements. The Project Advisor will act as an
overseer of the project to ensure Team Members do not lose sight of goals, do not become
overwhelmed by setting unreasonable goals, and coordinate logistics with the Project Sponsor.
The Project Sponsor will provide feedback on goals, progress, and deliverables.

B-3

3. PROJECT DESCRIPTION, SCHEDULE, AND RESOURCES

3.1 Project Work Breakdown Structure (WBS)

3.2 Resource Estimates

N/A.

3.3 Schedule

• Oct 12: Intro and Outline due to Course Coordinator
• Oct 19: Requirements Specification due to Course Coordinator
• Nov 6: Outline and Introduction II due to Project Advisor
• Nov 9: Project Notebook due to Project Advisor
• Nov 13: Outline and Introduction II due to Course Coordinator
• Nov 20: Support Plan due to Project Advisor
• Nov 27: System Design due to Project Advisor
• Dec 7: Fall Paper due to Course Coordinator
• Dec 10-13: Fall Presentation
• Dec 14: Fall Project Notebooks/Binders due.

B-4

• May TBD: Spring Project Presentation
• May TBD: Spring Paper/Project Notebooks due.

3.4 Communication Plan

N/A.

Project Members:

___________________________________ Date: _____________

___________________________________ Date: _____________

Project Advisor:

___________________________________ Date: _____________

C-1

Appendix C: Support Plan

1/c Becky Doyle and 1/c Josh Gaidos

Key Generation for Sensitive But Unclassified Communications
Support Plan

21 November 2007

Purpose:

This project evolved from the Coast Guard’s need for more secure communications,
specifically, a need for increased security in transmitting information over both wireless crew
communications devices on Small Boats and the fleet-wide Encrypted Automatic Identification
System (EAIS). This can be done if encryption could be performed using an advanced and
approved set of standards for data encryption called the Advanced Encryption Standard (AES).
While AES is currently usable, there is one important part that the Coast Guard does not have, a
way to “lock” the encryption so that only the intended recipient with the correct “key” may
“unlock” and read the data. Therefore, the desired result for this project is a computer program
that randomly creates a key to encrypt and decrypt data with AES. The program must be user-
friendly, allow users to set requirements for a key, and to copy-and-paste the key or to store the
key in a text file for later transmission. The development and implementation of this system will
greatly benefit the Coast Guard for its value in effectively securing data for transmission. It will
make Coast Guard communications more secure and hence more reliable, trustworthy, and cost-
effective.

Design Solution:

The requirements of this project include providing a random number generator (RNG)
which meets the standards of the National Institute for Standards and Technology (NIST). This
can be implemented by using a cryptographic module which is already NIST-approved.
CryptoSys API was chosen as just such a pre-approved module. It is a dynamically linked
library distributed by CryptoSys.net which can provide random numbers in accordance with
NIST requirements. This module was chosen as it met all project constraints and appears to have
a low procurement price of approximately US$150.

The final program must provide a graphical user interface (GUI) to control user

interaction. This GUI can be implemented using the Borland C++ Visual Template Library.
This is a non-portable, proprietary library which is subject to future change and development.
However, it is based on the ANSI/ISO standard of the C++ language and the library is currently
widely available. Should there be any need to later change the source code of the project without
rewriting the entire program, there is a reasonable probability that both the language and the
library will be effectively unchanged for the next several years.

These two design components, the RNG and the GUI, must cleanly interface to

effectively hide the program implementation from the user. Below, Figure 1 shows the Data

C-2

Flow Diagram of the proposed solution. The GUI is the sole source of user interaction. Through
the GUI, the user selects a key length which is then used by the API to generate a random
number. The details of the generation process are not relevant as the module is NIST-approved.
The API then sends out its random number to the GUI for display. Once the number is displayed
on-screen, the GUI presents the opportunity for the user to select to save the number to a text
file. If this is chosen, then the GUI calls up the routines to display a Save As dialog box to
further interact with the user. Once the optional generation of the text file is accomplished, the
GUI is ready for another trial.

Figure 1 – Data Flow Diagram

Using an approved cryptographic-module such as CryptoSys API will save considerable

time, money, and effort. The fundamental skills involved in writing such an API are well
beyond the level of cadets. Further, there are no profits to gain from the effort to learn how to
write such a module that would outweigh the benefits of using an already-approved module. The
GUI/API interface will be the base of the program coding. The best programming hides the
implementation of a solution from the user and only displays those facilities necessary for
effective use. How this is precisely accomplished will rest in the details of the API interface but
will follow the general outline of Figure 1.

Support Considerations:

 Economic

The project’s funding may come from the Electrical Engineering section or the project
sponsor. The API module is currently being explored for procurement options, but
current projections place acquisition at US$150 for unlimited distribution and total access
to the source code. As this is a nominal cost, the Electrical Engineering section can buy
the software outright without requesting competing bids from other API developers.

Other than the API, there are no further costs associated with this project. All other
portions are implemented in a software environment using a standardized language and
common compliers or libraries. Over the lifetime of the implementation, there is no
upkeep cost other than a final replacement implementation.

 Manufacturability

Our design will on a single computer as it is based entirely in software. The executable
file containing our project will be small enough for transmission over the Internet or any

C-3

other network to whichever project office requires an approved RNG. There will be only
a small scale distribution of the executable software. The headquarters office will run the
program and then use existing infrastructure to distribute the generated key to relevant
units. There are no specific questions associated with building the design.

 Sustainability and Reliability

The final result of the project must be extremely reliable for the lifetime of the system.
This is best implemented using effective information hiding in writing the GUI. No spare
parts are necessary to maintain the system, and so there is no storage space required for
spare parts.

The projected end of the life of this implementation is when NIST finishes the transition
from the current encryption standards (FIPS 140-2) to the next generation of the
standards (FIPS 140-3) sometime within the next decade. As the new standard has not
been approved yet, there is no way to prepare for any changes it might require. However,
if the project is written in suitably modular code, then the only change required will be to
a new and approved version of some API at a minimal project cost.

Life-Cycle Costs:

The executable implemented in this project must have a life-cycle of equivalent to that of
the hardware currently ready to use the RNG. Both the software being designed in this project
and the hardware infrastructure in place conform to the current NIST standard. As long as this
standard does not change, then this project should remain usable for the entire projected life of
the hardware. When the NIST standard changes, it might require changes in the hardware, the
software, both platforms, or neither platform. The best possible software design to accommodate
any changes implements a GUI written in modular code so that updates can be easily applied
only to affected sections. The only life-cycle cost is the one associated with revamping the
project should NIST change its software standards.

External Considerations:

 Environmental

There will be no direct impact upon the environment as a result of the project design.
The design is limited software so it has no effect upon the environment. Likewise, there
are no environmental factors to consider during the design, test, production, or use of the
project solution. There are no Federal or State Environmental Regulations involving this
project. There is no equipment in our project that must be disposed of at the end of this
project’s serviceable life.

 Health and Safety
There are no relevant health and safety issues.

 Ethical, Social & Political
There are no relevant ethical, social, or political issues.

C-4

Software Considerations:

 Privacy

There are no privacy considerations in this project.

The only information collected for this project is the desired length of the key and a pool
of random information collected from the computer hardware (hard drive write times,
sector search times, application CPU consumption, etc.). The key length is necessary for
determining the length of the randomly generated number. Generally speaking, the
length of the key is directly proportional to its strength – the longer the key, the harder it
is to discover.

A pool of random information is collected by the API and does not carry any personally
identifying information. Nothing about the hardware or software on the host system is
stored in the API. Only the timing of an assortment of random processes is used to
implement the RNG. Therefore no privacy concerns are valid. The information used to
create the key is not sensitive enough to be protected from unauthorized disclosure.

 Security
The GUI will temporarily store the randomly generated number provided by the API.
The user is responsible for the safe handling of the number once it is display and/or
generated through the GUI. The API already conforms to NIST standards for RNG
modules, so the strength of the random number is assured.

D-1

Appendix D: Functional Requirements

Key Generation for Sensitive But Unclassified Communications
Functional Requirements Document

14 April 2008
1/c Joshua Gaidos and 1/c Rebecca Doyle

1. INTRODUCTION

1.1 Project Description
This project evolved from the Coast Guard’s need for more secure communications,

specifically, a need for increased security in transmitting information over both wireless crew
communications devices on Small Boats and the fleet-wide Encrypted Automatic Identification
System (EAIS). This can be done if encryption could be performed using an advanced and
approved set of standards for data encryption called the Advanced Encryption Standard (AES).
While AES is currently usable, there is one important part that the Coast Guard does not have, a
way to “lock” the encryption so that only the intended recipient with the correct “key” may
“unlock” and read the data. Therefore, the desired result for this project is a computer program
that randomly creates a key to encrypt and decrypt data with AES. The program must be user-
friendly, allow users to set requirements for a key, and to copy-and-paste the key or to store the
key in a text file for later transmission. Additionally, it must be able to encrypt the key for
transmission and decrypt the key upon receipt. Upon implementation in the Coast Guard fleet,
the program must possess a government certification. However, this certification process is
outside the feasible scope of the project. Instead, a program suitable for submission for
certification testing along with all the necessary documentation and certification-process
information will be delivered. The development and implementation of this system will greatly
benefit the Coast Guard for its value in effectively securing data for transmission. It will make
Coast Guard communications more secure and hence more reliable, trustworthy, and cost-
effective.

1.1.1 Background

The Coast Guard needs to transmit Sensitive But Unclassified (SBU) information
wirelessly within and between vessels. SBU information is information which should not be
freely distributed to the public but does not need to be classified. Examples include phone
numbers, medical information, and details of the operational environment. The current
infrastructure which requires better communication security will be implemented with AES.
AES is a multi-round block encryption algorithm that was chosen and approved by the National
Institute for Standards and Technology (NIST) for use in government encryption. AES encrypts
data by operating on large chunks of text at once and performing a sequence of operations
multiple times.

In cryptography, a numeric key works in the same way a physical key works with a pin-
tumbler lock. A hard to guess or duplicate key is chosen which makes the encryption process

D-2

unique to that key. AES takes a 128 bit key, therefore the available number of keys is finite.
The best way to pick a hard to guess key is to choose it at random. As computers are finite state
machines such that their output is a direct function of their input and they are being used to
generate the key, the key cannot truly be chosen at random as long as the computer is functioning
properly. NIST has solved this problem by publishing a standards document called FIPS 140-2
which dictates how a random number generator must be able to perform to meet the
requirements for securing government communications.

The FIPS 140-2 certification process is testing program at any of several government-
approved labs. The testing phase can last anywhere from six to twelve months and cost tens of
thousands of dollars. The entire program must be approved for certification with each individual
process certified and receiving individual certification testing.

There are two Coast Guard systems which our project will directly benefit: EAIS and the
wireless crew communication systems on Small Boats. AIS allows ships to automatically
identify each other. The Coast Guard encrypts AIS so that its operations can be done securely –
similar to running darkened ship in the Information Age. Currently, EAIS is secured using a
freeware program which: 1. Does not meet NIST standards and 2. May contain backdoors,
encrypt poorly, or cause other security vulnerabilities due to it not being NIST tested and
approved.

Whereas EAIS has poor security, the Small Boat Community is transmitting in the open.
Their wireless crew communication devices talk with a black box which is hardwired to the
tactical VHF system. The VHF system has already been secured using public key cryptography.
Their unsecured internal transmissions pose a significant risk to operational security and privacy
requirements. Their communications can be overheard, retransmitted, and faked. None of these
actions are acceptable for a secure communications system.

1.1.2 Purpose
The purpose of this project is to design and create a new program to create a random number,
encrypt for transmission, and decrypt upon receipt. This random number will be used as the key
to secure encrypted data and will consequently support Coast Guard communications by
implementing the minimum level of security required by NIST standards. The program will
subsequently be submitted by the Coast Guard for FIPS certification.

1.2 Assumptions and Constraints
Assumptions:

1. Will be running on a reasonably up to date version of Windows XP or something that is
backwards compatible to Windows XP

2. Will only have to comply with NIST standards up to FIPS 140-2 and that the upcoming
FIPS 140-3 will not force the program to be changed

3. Distribution of the key is outside the scope of this project

4. One venue for the random number generator is producing a 128-bit key for AES but the
program must be flexible enough to produce possibly larger or smaller keys for other
encryption algorithms

D-3

5. Does not have to have NIST certification, but must be programmed to meet FIPS 140-2
standards for random number generators and AES encryption

Constraints:

1. Must be able to run on the Coast Guard Data Network

1.3 Documents Reference
“Automatic Identification System (AIS).” September 12, 2007. <http://www.l-

3ar.com/PDF_Files/MAR002.pdf>

Keller, Sharon. NIST-Recommended Random Number Generator Based on ANSI X9.31
Appendix A.2.4 Using the 3-Key Triple DES and AES Algorithms. National Institute of
Standards and Technology, 2005.

McCarter, Lars, LT USCG. Coast Guard Headquarters: CG-6. Personal Interview. 21 Sept.
2007.

---. Coast Guard Headquarters: CG-6. Personal Interview. 25 Sept. 2007.

---. Coast Guard Headquarters: CG-6. Personal Interview. 11 Apr. 2008.

Schneier, Bruce. Applied Cryptography: Protocols, Algorithms, and Source Code in C. New

York: John Wiley & Sons, Inc., 1996.

Trappe, Wade and Lawrence Washington. Introduction to Cryptography with Coding Theory.
Upper Saddle River, NJ: Prentice Hall, 2006.

United States. Department of Commerce. Federal Information Processing Standards Publication
140-2: Security Requirements for Cryptographic Modules. Washington: GPO, 2001.

2. SPONSOR NEEDS / OPERATIONAL REQUIREMENTS
 The Sponsor requires a random number generator with encryption and decryption
capabilities that meets the NIST standard for secure communication in FIPS 140-2. This is
undeliverable within the current timeframe and budget of the project due to the length and cost of
the NIST certification process. Instead, CG-6 has asked for a program suitable for undergoing
certification testing at a government lab. This requires suitable software documentation and an
amalgamation of the necessary information about the certification process so that the next project
officer can immediately begin negotiations with a testing lab.

The program must be an executable capable of running on Windows XP for deployment
on the Coast Guard Data Network. The executable must generate a Graphical User Interface
(GUI) which is the sole source of user input to the program. The program must create a random
key with a user-specified variable length. This pseudorandom number generator must be written
to conform to FIPS 140-2. The key length must vary between 64 to 256 bits to allow for use
with both antiquated Coast Guard technology and future cryptographic expansion. The key must
be output in hexadecimal format– i.e. a 32 digit hexadecimal string can be transmitted to make a
128-bit key for AES. The key must be output in the GUI such that it is convenient for copying-

D-4

and-pasting. The GUI must have an option for generating a text file containing the key. The
program must run in less than one minute and take up less than one gigabyte of memory.
Preferences for run time are a few seconds with a total memory requirement of 200-300
kilobytes.

Additionally, the GUI must be able to encrypt and decrypt the key using an encryption

algorithm certified under FIPS 140-2. The user should be able to type an encrypted key along
with an encryption key and initialization string into the GUI and have the decrypted key
displayed with the option of creating a text file containing the decrypted key. Alternatively, the
program should be able to read in a text file containing the encrypted key and then display the
decrypted key for copy/paste with the option to create a text file containing the decrypted key.

3. REQUIREMENTS TRACEABILITY MATRIX

Need Functional Requirement Justification

1 Meets NIST standard FIPS 140-2 It is a secure government communication
system

2 Must run on Windows XP The current Coast Guard operating system
is Windows XP

3 Must run in less than 1 minute The program cannot bog down Coast
Guard computers

4 Must run in less than 1 Gb of memory Coast Guard computers are not
standardized for memory requirements, so
the system cannot be bogged down

5 User interface must be a GUI The program must be intuitive and easy to
use

6 Encrypted key must be ready for copy-and-
paste with the option to create a text file

The key must be available for transmission
in a variety of formats

7 The key must be a user-specified variable
length

The program must be exportable to future
encryption systems

8 The key must be output in hexadecimal The secure communication infrastructure
accepts keys in hexadecimal

9 Must encrypt keys and display both the
encrypted key and the initialization string
for the encryption

An extra layer of security is required for
transmission of the key

10 Must decrypt keys input by hand or stored
in a text file so that the decrypted key is
ready for copy-paste function with the
option to create a text file

An extra layer of security is required for
transmission of the key

E-1

Appendix E: Test Plan

Key Generation for Secure Coast Guard Communications
Test Plan

25 March 2008

1/c Joshua Gaidos and 1/c Rebecca Doyle

Synopsis: Foremost, this is a series of tests to demonstrate that the final software package

developed within this project conforms to the project requirements as outlined in
the latest Project Requirements Document. Leading up to the final acceptance
testing, these tests are to evaluate what debugging must occur before final delivery
of the product.

Personnel: These tests require four people for data collection:
One person will be proficient with the program.
One person will be new to the program but proficient in programming.
One person will be new to the program but not proficient in programming.
One person will be randomly selected from a pool of potential users.

Procedure: The program will be downloaded to the hard drive and run on an up-to-date

version of Windows XP similar to current Coast Guard Standard Workstation IIIs.
Testing will occur on .edu machines and EEnet machines, so no other oversight is
required for testing. Testing for each individual should take one to two hours.

Equipment Required:
1. One computer running an up-to-date version of Windows XP with Service Pack 2.
2. One 2GB USB drive for importing the folder KeyToolKit, containing all the program
files to the testing system

Initial Set-up:

1. The tester must transfer the folder KeyToolKit containing the test program onto
the hard drive of the test machine from the provided USB drive.
2. Close all other programs. Testing may commence once the folder has been
transferred.

E-2

Test # 1 – Start-up Test

Objective: This test will demonstrate that the program successfully runs on the host machine
in the expected format.

Requirements: Requirement 2: Must run on Windows XP SP2
 -This is the current CG operating system

Requirement 5: User interface must be a GUI
-The program must be intuitive, easy to use, and reduce the possibility of

user error

Test Overview: The program will be initialized from the executable and some user interaction
will occur to show that the program has at least minimum functionality and is
capable of running on the host.

Test Procedure:
A: Opening the Program

1 Go to the folder KeyToolKit containing the transferred files. Double click on the
folder and navigate through the folders and open KeyToolKit\KeyToolKit\obj\Release

2 Select the executable KeyToolKit.exe by double-clicking with the mouse. A GUI
should appear.

Test Desired Result Actual Result
GUI Opened

GUI appears with no errors

3 Click the X in the upper right hand corner of the GUI. The program should

immediately close.
Test Desired Result Actual Result

GUI Closed

GUI disappears with no errors

B: Working the About Dialog Box

4 Repeat Step 2 to open the GUI again.
5 Now click the About button. An About dialogue box should appear.

Test Desired Result Actual Result
About Dialog
Opens

About dialog box appears with no
errors

E-3

6 Click the OK button. The About dialogue box should disappear.
Test Desired Result Actual Result

OK Button in
About Dialog
Works

About dialog box disappears with
no errors

7 Repeat Step 5 to open the About dialogue box again.
8 Click the X in the upper corner of the title bar. The About dialogue box should

disappear.
Test Desired Result Actual Result

Closing
Button in
About Dialog
Works

About dialog box disappears with
no errors

9 Click the X in the upper right hand corner of the GUI to close the program.

Results:

E-4

Test # 2 – Key Generation Test

Objective: This test will demonstrate that the program successfully runs on the host machine
and can successfully generate encrypted keys of the specified length.

Requirements: Requirement 2: Must run on Windows XP
 - This is the current CG operating system

Requirement 3: Must run in less than 1 minute
 - The program must not bog down the computer
Requirement 4: Must run in less than 1 Gb of memory

- CG computers do not have standardized memory requirements, so the
 system cannot be bogged down

Requirement 5: User interface must be a GUI
- The program must be intuitive, easy to use, and reduce the possibility of

user error.
Requirement 6: Output must be ready for copy-and-paste with the option to

create a text file
 - The key must be available for transmission in a variety of formats
Requirement 7: The key must be variable length
 - The program must be exportable to future encryption systems
Requirement 8: The key must be output in hexadecimal format

 - The secure communication infrastructure accepts keys in hexadecimal
Requirement 9: The program must encrypt the key

 - An extra layer of security is required for transmission of the key

Test Overview: The program will be initialized from the executable and the user will generate

an encrypted hexadecimal key. The key will be available for copy/paste
functionality and for saving in a text file.

Test Procedure:
A: Key Length Selection

1 Go to the folder KeyToolKit containing the transferred files. Double click on the
folder and navigate through the folders and open KeyToolKit\KeyToolKit\obj\Release

2 Select the executable KeyToolKit.exe by double-clicking with the mouse. A GUI
should appear.

3 Click on the arrow keys on the Key Length numeric up/down box. Vary the length of
the key from the smallest extreme to the greatest extreme. The length should vary
from 64 to 4096 in intervals of 64.

Test Desired Result Actual Result
Numeric
Up/Down
Box Arrow
Keys

Key length begins at 128. Length
varies from 64 to 4096 by 64s.

E-5

4 Try typing in the Key Length box and pressing the Enter key on the keyboard to store
that key length.

5 Click on the arrow keys. The key length should vary by intervals of 64.
Test Desired Result Actual Result

Numeric
Up/Down
Box User
Input

Letters and symbols are not
accepted. Only whole numbers
from 64 to 4096 which are
divisible by 4 are displayed after
pressing Enter

Numeric
Up/Down
Box Arrow
Keys From
User Input

Length varies from 64 to 4096 by
64s from whatever key length is
currently displayed.

B: Generating a Key

6 Click the Generate Key button. Three sets of hexadecimal numbers should be
displayed in the GUI.

Test Desired Result Actual Result
Generate
Key Button

Three sets of hexadecimal
numbers are displayed in the
GUI.

Lengths:
Hidden Key for Transmission
1. (Key Length) divided by 4
Encryption Key
2. 32 digits
Encryption String
3. 32 digits

7 Attempt to delete or modify the displayed numbers. Nothing should happen.

Test Desired Result Actual Result
Keys are
Read-only

User should not be able to modify
any of the displayed sets of
hexadecimal numbers

E-6

8 Try generating keys of various lengths.
Test Desired Result Actual Result

Generate
Keys of
Varying
Lengths

Three sets of hexadecimal numbers
are displayed in the GUI.

Lengths:
Hidden Key for Transmission
1. (Key Length) divided by 4
Encryption Key
2. 32 digits
Encryption String
3. 32 digits

9 Attempt to copy and paste all three sets of hexadecimal numbers into a word

processing program such as Microsoft Word, Notepad, or Wordpad. This should be
successful.

Test Desired Result Actual Result
Copy/paste
Utility

All three sets of hexadecimal
numbers can be copied to the
clipboard and pasted into a word
processing program

C: Saving the Key to a Text File

10 Click the Generate Text File button. A Save As dialogue box should appear
prompting to save a text file.

11 Click the Cancel button.
12 Click the Generate Text File button. A Save As dialogue box should appear

prompting to save a text file.
13 Choose an appropriate location and name and save the file.

Test Desired Result Actual Result
Save As
Dialog
Appears

A standard Windows Save As
dialog box appears

Save As
Cancelation

Save As dialog box closes, program
and data remain unchanged, no text
file is generated

Save As
Acceptance

Save As dialog box closes, program
and data remain unchanged, text
file is created in the desired
location

E-7

14 Open the file and inspect the contents.
15 Repeat steps 11-15 with 3 keys of different lengths.

Test Desired Result Actual Result
Text File
Contents

There should be three sets of
hexadecimal numbers separated by
newlines and the @ symbol.

The first set should have a length
of the key length/4.

The other two sets should be 32
digits long.

16 Click the X in the upper right hand corner of the GUI to close the program.

Results:

E-8

Test # 3 – Key Decryption Test

Objective: This test will demonstrate that the program can successfully read in an encrypted
key and produce decrypted results available for copy/paste or saving as a text file.

Requirements: Requirement 2: Must run on Windows XP
 - This is the current CG operating system

Requirement 3: Must run in less than 1 minute
 - The program must not bog down the computer
Requirement 4: Must run in less than 1 Gb of memory

- CG computers do not have standardized memory requirements, so the
 system cannot be bogged down

Requirement 5: User interface must be a GUI
- The program must be intuitive, easy to use, and reduce the possibility of

user error.
Requirement 6: Output must be ready for copy-and-paste with the option to

create a text file
 - The key must be available for transmission in a variety of formats
Requirement 7: The key must be variable length
 - The program must be exportable to future encryption systems
Requirement 8: The key must be output in hexadecimal format

 - The secure communication infrastructure accepts keys in hexadecimal
Requirement 10: The program must decrypt keys it generated

 - An extra layer of security is required for transmission of the key

Test Overview: The program will be initialized from the executable. The user will manually

enter keys and selected previously generated key files to enter keys. The
entered keys will be decrypted and available for copy/paste functionality and
for saving in a text file.

Test Procedure:
A: Decrypting from a Text File

1 Ensure that keys and the appropriate encryption information have already been
generated and saved in various text files using Test #2.

2 Go to the folder KeyToolKit containing the transferred files. Double click on the
folder and navigate through the folders and open KeyToolKit\KeyToolKit\obj\Release

3 Select the executable KeyToolKit.exe by double-clicking with the mouse. A GUI
should appear.

E-9

4 Click on the tab Decrypt the Key. A new set of buttons and text boxes should appear.
Test Desired Result Actual Result

Decrypt Key Tab Clicking between the
Generate the Key tab and
Decrypt the Key tab smoothly
transitions between two
different sets of buttons and
text boxes

5 Click on the arrow keys on the Key Length numeric up/down box. Vary the length of

the key from the smallest extreme to the greatest extreme. The length should vary
from 64 to 4096 in intervals of 64.

Test Desired Result Actual Result
Numeric
Up/Down
Box Arrow
Keys

Key length begins at 128. Length
varies from 64 to 4096 by 64s.

6 Try typing in the Key Length box and pressing the Enter key on the keyboard to store

that key length.
7 Click on the arrow keys. The key length should vary by intervals of 64.

Test Desired Result Actual Result
Numeric
Up/Down
Box User
Input

Letters and symbols are not
accepted. Only whole numbers
from 64 to 4096 which are
divisible by 4 are displayed after
pressing Enter

Numeric
Up/Down
Box Arrow
Keys From
User Input

Length varies from 64 to 4096 by
64s from whatever key length is
currently displayed.

E-10

8 Select the key length corresponding to an existing encrypted key.
9 Click on the Read From Text File radio button.
10 Click on Read Key From Text File button. An Open File dialogue box should appear.
11 Click on Cancel
12 Click on Read Key From Text File button.
13 Select a file containing an encrypted key of the specified length.
14 Press the OK button. The key should be displayed decrypted in the GUI.

Test Desired Result Actual Result
Open File
Dialog

Dialog box appears without error

Open File
Cancelation

Dialog box closes, the program
remains running, no data is visibly
changed

Open File
Acceptance

Dialog box closes.
Key for Device Input, Encryption
Key to Unlock Key, and Encryption
String are all displayed in the GUI
and are of the proper length.

Lengths:
Key for Device Input
1. (Key Length) divided by 4
Encryption Key to Unlock Key
2. 32 digits
Encryption String
3. 32 digits

17 Repeat steps 8-14 with 3 keys of different lengths.

Test Desired Result Actual Result
Text File
Contents

There should be three sets of
hexadecimal numbers separated by
newlines and the @ symbol.

The first set should have a length
of the key length/4.

The other two sets should be 32
digits long.

E-11

18 Select a key length that is different from the length of the key contained in the file.
19 Click on the Read Key From Text File button. The decrypted key should be properly

displayed.
20 Edit one of the text files generated by the program so that on each click of the Read

Key From Text File button only one of the listed errors is present. Click on the Read
Key From Text File button for the text file for each error. A dialogue box should be
displayed but the program should otherwise function normally:
a. The first set of hexadecimal numbers is too long
b. The second set of hexadecimal numbers is too long
c. The third set of hexadecimal numbers is too long
d. The first set of hexadecimal numbers is too short
e. The second set of hexadecimal numbers is too short
f. The third set of hexadecimal numbers is too short
g. The first set of hexadecimal numbers is missing
h. The second set of hexadecimal numbers is missing
i. The third set of hexadecimal numbers is missing
j. The first @ symbol is missing
k. The last @ symbol is missing

Test Desired Result Actual Result
Exception
handling of
lengths in
Text File

Program does not close. Dialogue
box describing error is displayed.
No new output is displayed in the
GUI

B: Decrypting from User Input

15 Click on the Input by Hand radio button. The text boxes should enable allowing for
user input of the key and encryption protocols.

16 Using a set of keys and the encryption numbers from a previous run of the key

E-12

generation portion of the program, enter them into the appropriate text boxes.
17 Click the Decrypt Key for Device Input button. The input key should change to the

decrypted key.
18 Repeat Steps 15-17 for three key lengths.

Test Desired Result Actual Result
User Input of
Encrypted
Key

All text boxes should enable
allowing for user input.

Program should accept uppercase
or lowercase letters.

Any symbols, missing numbers, or
a number of incorrect length will
result in no Key For Device Input
being displayed

C: Making a Text File for the Decrypted Key

19 Once a decrypted key is displayed, click the Make Text File button. A Save As dialog
box should appear for saving a text file. Save in an appropriate location with an
appropriate name.

20 Click the Cancel button.
21 Click the Make Text File button. Save in an appropriate location with an appropriate

name.
Test Desired Result Actual Result

Save As
Dialog
Appears

A standard Windows Save As
dialog box appears

Save As
Cancelation

Save As dialog box closes, program
and data remain unchanged, no text
file is generated

Save As
Acceptance

Save As dialog box closes, program
and data remain unchanged, text
file is created in the desired
location

E-13

22 Open the file and inspect the contents.
23 Repeat steps 19-22 with 3 keys of different lengths.

Test Desired Result Actual Result
Text File
Contents

There should be three sets of
hexadecimal numbers separated by
newlines and the @ symbol.

The first set should have a length
of the key length/4.

The other two sets should be 32
digits long.

24 Close the program.

Results:

E-14

Test # 4 – Randomness Test

Objective: This test will demonstrate that the program successfully runs on the host machine
and can successfully generate encrypted keys of the specified length.

Requirements: Requirement 1: Generate a pseudo-random number
 - The CG needs a cryptographically secure random number

Test Overview: The program will be initialized from the executable and the user will see if

common errors in using a random number generator have occurred.

Test Procedure:
A: Random Seed Value

1 Go to the folder KeyToolKit containing the transferred files. Double click on the
folder and navigate through the folders and open KeyToolKit\KeyToolKit\obj\Release

2 Select the executable KeyToolKit.exe by double-clicking with the mouse. A GUI
should appear.

3 Click on the Generate Key button.
4 Copy all three set of hexadecimal numbers into a word-processing utility such as

Microsoft Word.
5 Close the program
6 Select the executable KeyToolKit.exe by double-clicking with the mouse.
7 Click on the Generate Key button.
8 Compare the two sets of numbers. No pair of number should be the same.

Test Desired Result Actual Result
Random
Seed

The program should generate
numbers that are different on each
startup.

B: Accuracy of Encryption

9 Go to the folder KeyToolKit containing the transferred files. Double click on the
folder and navigate through the folders and open KeyToolKit\KeyToolKit\obj\Release

10 Select the executable KeyToolKit.exe by double-clicking with the mouse. A GUI
should appear.

11 Set the Key Length to 128
12 Click on the Generate Key button.
13 Click on the Make Text File button
14 Save the file to an appropriate location with an appropriate name
15 Click on the Decrypt the Key tab
16 Set the Key Length to 128
17 Click on the radio button for Read From Text File
18 Select the previously created text file
19 Click on the radio button for Input By Hand
20 Click on the Decrypt Key for Device Input button

E-15

21 Compare the generated key from the Generate the Key tab to the twice decrypted key
on the Decrypt the Key tab. They should be the same

22 Click on the radio button for Read From Text File
23 Click on the radio button for Input By Hand
24 Click on the Decrypt Key for Device Input button
25 Compare this key to what was displayed as a result of Step 18

Test Desired Result Actual Result
Accurate
Backward
Encryption

The program should display the
originally created encrypted key

Accurate
Forward
Encryption

The program should display the
decrypted key.

Results:

F-1

Appendix F: Design Specifications

Key Generation for Sensitive But Unclassified Communications
Design Specification

14 April 2008
1/c Joshua Gaidos and 1/c Rebecca Doyle

Purpose: This project evolved from the Coast Guard’s need for more secure
communications, specifically, a need for increased security in transmitting information over both
wireless crew communications devices on Small Boats and the fleet-wide Encrypted Automatic
Identification System (EAIS). This can be done if encryption could be performed using an
advanced and approved set of standards for data encryption called the Advanced Encryption
Standard (AES). While AES is currently usable, there is one important part that the Coast Guard
does not have, a way to “lock” the encryption so that only the intended recipient with the correct
“key” may “unlock” and read the data. Therefore, the desired result for this project is a
computer program that randomly creates a key to encrypt and decrypt data with AES. The
program must be user-friendly, allow users to set requirements for a key, and to copy-and-paste
the key or to store the key in a text file for later transmission. Additionally, it must be able to
encrypt the key for transmission and decrypt the key upon receipt. Upon implementation in the
Coast Guard fleet, the program must possess a government certification. However, this
certification process is outside the feasible scope of the project. Instead, a program suitable for
submission for certification testing along with all the necessary documentation and certification-
process information will be delivered. The development and implementation of this system will
greatly benefit the Coast Guard for its value in effectively securing data for transmission. It will
make Coast Guard communications more secure and hence more reliable, trustworthy, and cost-
effective.

Design Solution:
 We approached the project by evaluating the Functional Requirements of the GUI. These
requirements are shown in Table 1. Most of the system requirements, such as “User interface
must be a GUI” and “Must run on Windows XP,” can be met by purely selecting an appropriate
cryptographic module. The others will be met as the GUI is built.

Table 1 – Functional Requirements
Need Functional Requirement Justification

1 Programmed to meet NIST standard FIPS
140-2

It is a secure government communication
system

2 Must run on Windows XP The current Coast Guard operating system
is Windows XP

3 Must run in less than 1 minute The program cannot bog down Coast
Guard computers

4 Must run in less than 1 Gb of memory Coast Guard computers are not
standardized for memory requirements, so

F-2

the system cannot be bogged down
5 User interface must be a GUI The program must be intuitive and easy to

use
6 Encrypted key must be ready for copy-and-

paste with the option to create a text file
The key must be available for transmission
in a variety of formats

7 The key must be a user-specified variable
length

The program must be exportable to future
encryption systems

8 The key must be output in hexadecimal The secure communication infrastructure
accepts keys in hexadecimal

9 Must encrypt keys and display both the
encrypted key and the initialization string
for the encryption

An extra layer of security is required for
transmission of the key

10 Must decrypt keys input by hand or stored
in a text file so that the decrypted key is
ready for copy-paste function with the
option to create a text file

An extra layer of security is required for
transmission of the key

 After we reviewed the Project Requirements, we created a Work Breakdown Structure
(WBS) which shows in a flow chart format all of the individual tasks that our project is made up
of. Starting in the upper-left corner and following the arrows: we separate research, module
selection, creating the GUI, and testing it in various capacities. By the time we have completed
testing, we will have a finished product ready to be delivered to CG-6.

Figure 1 – Project Work Breakdown Structure

The first step was to research and select a cryptographic module that met all of the

Project Requirements listed in Table 1. After a long period of research, we identified CryptoSys
API as the most viable option for this project. We wanted to select a module that met the
requirements and would be using a programming language that we already knew or easily learn.
Since we have spent at over three semesters studying and programming in C++, we found that

F-3

choosing the C# version of CryptoSys was the easiest to use and produced the least number of
initial bugs.

Once the module was selected, we began creating the GUI and learning how to use the
program. Over time, the GUI image has evolved. Originally, the GUI was intended to resemble
Figure 2. The GUI changed as it was developed, tested, and requirements were added.
Functionality was expanded to include such things as being able to encrypt and decrypt the key.
Figure 3 shows two images of the GUI as it is currently designed. The GUI contained in Figure
3 is current with the Project Requirements and is the image that we will refer to as our GUI.

Figure 2 – Original GUI Design

The program works thusly: To generate the key there are two steps: 1) set the key length,

and 2) select the Generate Key button. The program will then generate a random key, an
encryption key, and an initialization value. The initialization value is necessary as the AES
algorithm used for encryption is set to use Cipher Block Chaining. Next, the user must may
select Make a Text File and save the data that was just generated. Otherwise, the numbers are
left in read-only windows available for copy and pasting.

To decrypt a key, the user selects the tab for Decrypt the Key. This will show the user
options for importing the data into the windows on the Decrypt the Key tab. When decrypting
the data, the user can either input data by hand or import it from a saved text file. In each case,
only those options required for the specific operation will be enabled. For reading from a text
file, clicking on the Read Key from Text File button will display an Open File dialog box. Upon
selecting the appropriate file, the program will automatically read the relevant information from
the file and display the decrypted key along with the other two relevant sets of decryption
numbers. The process is similar for hand input. Once all the boxes have the appropriate
numbers typed in them, pressing the Decrypt Key for Device Input button will cause the
encrypted key to change to the decrypted key value for inputting into the ship’s encryption
hardware.

The most valuable piece of information output by this GUI is the hexadecimal number in
either the Key for Transmission window or the Key For Device Input window, as these are the
locations where the random key of a specific length will be displayed.

F-4

Figure 3 – Current GUI images

 The flow of information through the software, as described above, is shown below in

Figure 4. The user enters into the GUI their specifications for the key and that data is then
transmitted to CryptoSys API. Once a number is randomly generated to meet the specifications
of the user, the random hexadecimal number is returned to the GUI for the user. Encryption and
decryption work the same way.

Figure 4 – Diagram of Information Flow in Program

Design Decisions:

One reason that we chose CryptoSys API, aside from the previously stated functional
abilities, is the low-cost of acquiring and using the module. The module is free to test, and there
is only a modest fee to purchase and use the Developer’s Version.

The very basic GUI shown in Figure 2 completed all of the basic tasks. Changes to the

GUI design came about for a few reasons. First, half-way through the programming phase, our
sponsor added the requirement for encrypting and decrypting keys. This small requirement

F-5

added another viewing tab, more buttons, and data windows to the GUI. Reasoning behind the
two tabs, one for encrypting and one for decrypting, was that we did not want to clutter the GUI
with too many buttons and viewing windows. The tab layout works well because the user will
either be generating and encrypting or decrypting the key, so this was a good, clean way to
separate functionality to make the GUI more organized and user-friendly.

Requirements:

Need Functional Requirement How Design Meets Rqmt
1 Programmed to meet NIST standard

FIPS 140-2
The program uses the random number
generator provided in the CryptoSys API
software

2 Must run on Windows XP This is one of the system characteristics for
CryptoSys API

3 Must run in less than 1 minute Testing the GUI has shown that the program is
able to generate a number very quickly, despite
the specified length

4 Must run in less than 1 Gb of memory None of our tests have failed due to
insufficient memory

5 User interface must be a GUI CryptoSys API, creates GUIs.
6 Encrypted key must be ready for copy-

and-paste with the option to create a text
file

There are buttons in the GUI to do this and
they have been tested and proven to work.

7 The key must be a user-specified
variable length

The window to specify length can change and
has been tested.

8 The key must be output in hexadecimal In all tests, none of the keys have been
returned in a different format other than
hexadecimal.

9 Must encrypt keys and display both the
encrypted key and the initialization string
for the encryption

There are buttons in the GUI to do this and
they have been tested and proven to work.

10 Must decrypt keys input by hand or
stored in a text file so that the decrypted
key is ready for copy-paste function with
the option to create a text file

There are buttons in the GUI to do this and
they have been tested and proven to work.

G-1

Appendix G: GUI Source Code

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.IO;
using CryptoSysAPI;

namespace KeyToolKit
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 }

 private void Cmd_Gen_Click(object sender, EventArgs e)
 {
 int Length = (Convert.ToInt16(NBx_KeyLen.Value)) / 8;
 string PlainKey = CryptoSysAPI.Rng.KeyHex(Length, "");
 string EncryptedKey = "";
 string Key2 = CryptoSysAPI.Rng.KeyHex(16, "");
 TBx_Key.Text = Key2;
 string IV = CryptoSysAPI.Rng.KeyHex(16, "");
 TBx_IV.Text = IV;
 EncryptedKey = CryptoSysAPI.Aes128.Encrypt(PlainKey, Key2,
Mode.CFB, IV);
 TBx_Encrypted.Text = EncryptedKey;
 Cmd_TextFileEncrypted.Enabled = true;

 }

 private void Cmd_TextFileEncrypted_Click(object sender, EventArgs e)
 {
 Stream myStream;
 SaveFileDialog saveFileDialog1 = new SaveFileDialog();

 saveFileDialog1.Filter = "txt files (*.txt)|*.txt";
 saveFileDialog1.FilterIndex = 1;
 saveFileDialog1.RestoreDirectory = true;

 if (saveFileDialog1.ShowDialog() == DialogResult.OK)
 {
 if ((myStream = saveFileDialog1.OpenFile()) != null)
 {
 myStream.Close();
 }
 using (StreamWriter sw = new
StreamWriter(saveFileDialog1.FileName))
 {

G-2

 // Add some text to the file.
 sw.WriteLine(TBx_Encrypted.Text);
 sw.WriteLine("@");
 sw.WriteLine(TBx_Key.Text);
 sw.WriteLine("@");
 sw.WriteLine(TBx_IV.Text);
 sw.WriteLine("@");
 }
 }
 }

 private void Cmd_ReadKey_Click(object sender, EventArgs e)
 {

 Stream myStream = null;
 OpenFileDialog openFileDialog1 = new OpenFileDialog();
 if (openFileDialog1.ShowDialog() == DialogResult.OK)
 {
 try
 {
 if ((myStream = openFileDialog1.OpenFile()) != null)
 {
 using (myStream)
 {
 string FileName = openFileDialog1.FileName;
 StreamReader re = File.OpenText(FileName);

 string FromFile = "" ;

 string EncryptedKeyQ = "";
 string DecryptionKeyQ = "";
 string IVQ = "";
 string KeyForUseQ = "";

 int counter = 0;

 while (((FromFile = (re.ReadLine())) != "@") &&
(counter < 1000))
 {
 EncryptedKeyQ += FromFile;
 counter++;
 }
 while (((FromFile = (re.ReadLine())) != "@") &&
(counter < 1000))
 {
 DecryptionKeyQ += FromFile;
 counter++;
 }
 while (((FromFile = (re.ReadLine())) != "@") &&
(counter < 1000))
 {
 IVQ += FromFile;
 counter++;
 }

 TBx_KeyDecrypt.Text = DecryptionKeyQ;

G-3

 TBx_IVDecrypt.Text = IVQ;
 KeyForUseQ =
CryptoSysAPI.Aes128.Decrypt(EncryptedKeyQ, DecryptionKeyQ, Mode.CFB, IVQ);

 TBx_DecryptedKey.Text = KeyForUseQ;
 Cmd_TextFilePlain.Enabled = true;
 }
 }
 }
 catch (Exception ex)
 {
 MessageBox.Show("Error: Could not read file from disk.
Original error: " + ex.Message);
 }
 }

 }

 private void Cmd_Decrypt_Click(object sender, EventArgs e)
 {
 string EncryptedKeyD = "";
 string KeyD = "";
 string IVD = "";

 string KeyForUseD = "";
 try
 {
 EncryptedKeyD = TBx_DecryptedKey.Text;
 KeyD = TBx_KeyDecrypt.Text;
 IVD = TBx_IVDecrypt.Text;
 EncryptedKeyD = EncryptedKeyD.ToUpper();
 KeyD = KeyD.ToUpper();
 IVD = IVD.ToUpper();
 if ((EncryptedKeyD.Length != (NBx_KeyLengthDecrypt.Value /
4)) || (KeyD.Length!=32) || (IVD.Length!=32))
 {
 throw new InvalidOperationException("Error during reading
from text file. Check user input for proper format and key length.");
 }

 KeyForUseD = CryptoSysAPI.Aes128.Decrypt(EncryptedKeyD, KeyD,
Mode.CFB, IVD);

 TBx_DecryptedKey.Text = KeyForUseD;
 Cmd_Decrypt.Enabled = false;
 Cmd_TextFilePlain.Enabled = true;
 TBx_DecryptedKey.ReadOnly = true;
 }
 catch (Exception ex)
 {
 MessageBox.Show("Error: Input Values are incorrect
somehow.\n" + ex.Message);
 }

 }

G-4

 private void RB_Text_CheckedChanged(object sender, EventArgs e)
 {
 if (RB_Text.Checked == true)
 {
 Cmd_ReadKey.Enabled = true;
 Cmd_Decrypt.Enabled = false;
 TBx_DecryptedKey.ReadOnly = true;
 TBx_KeyDecrypt.ReadOnly = true;
 TBx_IVDecrypt.ReadOnly = true;
 Cmd_TextFilePlain.Enabled = false;
 }
 else
 {
 Cmd_ReadKey.Enabled = false;
 Cmd_Decrypt.Enabled = true;
 TBx_DecryptedKey.ReadOnly = false;
 TBx_KeyDecrypt.ReadOnly = false;
 TBx_IVDecrypt.ReadOnly = false;
 Cmd_TextFilePlain.Enabled = false;
 }
 }

 private void RB_Hand_CheckedChanged(object sender, EventArgs e)
 {
 if (RB_Hand.Checked == true)
 {
 Cmd_ReadKey.Enabled = false;
 Cmd_Decrypt.Enabled = true;
 TBx_DecryptedKey.ReadOnly = false;
 TBx_KeyDecrypt.ReadOnly = false;
 TBx_IVDecrypt.ReadOnly = false;
 Cmd_TextFilePlain.Enabled = false;
 }
 else
 {
 Cmd_ReadKey.Enabled = false;
 Cmd_Decrypt.Enabled = false;
 TBx_DecryptedKey.ReadOnly = true;
 TBx_KeyDecrypt.ReadOnly = true;
 TBx_IVDecrypt.ReadOnly = true;
 Cmd_TextFilePlain.Enabled = false;
 }
 }

 private void Cmd_TextFilePlain_Click(object sender, EventArgs e)
 {
 Stream myStream;
 SaveFileDialog saveFileDialog1 = new SaveFileDialog();

 saveFileDialog1.Filter = "txt files (*.txt)|*.txt";
 saveFileDialog1.FilterIndex = 1;
 saveFileDialog1.RestoreDirectory = true;
 try
 {
 if (saveFileDialog1.ShowDialog() == DialogResult.OK)
 {
 if ((myStream = saveFileDialog1.OpenFile()) != null)

G-5

 {
 myStream.Close();
 }
 else
 {
 throw new FileLoadException("Error reading file");
 }
 using (StreamWriter sw = new
StreamWriter(saveFileDialog1.FileName))
 {
 // Add some text to the file.
 sw.WriteLine(TBx_DecryptedKey.Text);
 sw.WriteLine("@");
 sw.WriteLine(TBx_KeyDecrypt.Text);
 sw.WriteLine("@");
 sw.WriteLine(TBx_IVDecrypt.Text);
 sw.WriteLine("@");
 }
 }
 }
 catch (Exception ex)
 {
 MessageBox.Show("Error: File may already be open\n" +
ex.Message);
 }
 }

 private void Cmd_About_Click(object sender, EventArgs e)
 {
 AboutBox1 f = new AboutBox1();
 f.ShowDialog();

 }

 }
}

	Key_Paper.pdf
	AppendixA.pdf
	AppendixB.pdf
	AppendixC.pdf
	AppendixD.pdf
	AppendixE.pdf
	AppendixF.pdf
	AppendixG.pdf

