
1

Abstract

 With the growth of advanced imaging technology, image and video processing have

become popular. It is useful in many applications, such as increasing the security in areas with a

large number of people. By filtering out the moving objects, suspicious objects that remain still

for a defined amount of time will be identified. This paper will discuss a quantitative approach to

removing objects from images and video. Objects that obstruct the view of the background can

be seen as interferences. These interferences can hinder a security camera’s ability to monitor

activity of possible threats. The goal of the project is to remove all those interferences, and

maintain the desired background. The methods of image processing that have been researched in

this project are averaging, median, most common method, and the graph cut method. Thus far,

with MATLAB, median filter was determined to be the optimal filter for video processing

technique, and Graph Cut Method is proof to be the optimal processing method for images.

However, more researches need to be conducted to find a better alternative to the median filter,

and to improve the efficiency of the Graph Cut Method.

2

Table of Contents (To be used if paper is longer than 20 pages)

Introduction page 3
Background page 4

Basic Concepts about Images
Averaging Filter
Basic Concepts about Video
Median Filter
Quantization & the Most Common Method
Graph Cut Method

Objective page 16
System Design page 18
Results page 21
Conclusions page 29
References page 30
Bibliography page 30
Appendices

 Appendix A: Business Plan A-1
 Appendix B: Project Management Plan B-1
 Appendix C: Functional Requirements Document C-1
 Appendix D: Support Plan D-1
 Appendix E: MATLAB Code for averaging video E-1
 Appendix F: MATLAB Code for taking the Median of images F-1
 Appendix G: MATLAB Code to concatenate original and filtered video G-1
 Appendix H: MATLAB Code for averaging images H-1
 Appendix I: MATLAB Code for taking Median images I-1
 Appendix J: MATLAB Code to read all files of video J-1
 (mmread obtained from mathwork)
 Appendix K: MATLAB Code for function “process frame” K-1
 used by mmread function
 Appendix L: MATLAB Code for function “makedll” used by mmread. L-1
 Appendix M: Test Plan. M-1
 Appendix N: Design Specifications. N-1
 Appendix O: Data Cost function code. O-1
 Appendix P: Neighbor Cost function code. P-1
 Appendix Q: Quantization Code. Q-1
 Appendix R: Graph Cut Algorithm. R-1
Appendix S: MAX_flow function code to cut the graph. S-1

3

Introduction
Surveillance cameras can be improved to increase the detection of possible illegal

activities using certain digital image processing applications. Digital image processing allows a

computer user to manipulate the pixels values using computer algorithms so that more desired

information can be identified.

Digital images and video have been used in many surveillance and data collecting

applications [1]-[4]. Often, the images captured are of poor quality. The most common image

processing techniques used in home computers are to remove red eye in photos, to increase skin

tone, or to alter the image sharpness.

Images and video often encounter external objects that interfere with the view; decreasing

the desired result of images and videos. For example, at a checkpoint or an airport terminal, the

airport security agent is unable to observe the activity that hides behind the many people that

walk in the cameras path. By applying digital image processing techniques, the security monitor

can identify left luggage or suspicious persons that remain stationary for a defined period of

time. The defined period of time can be adjusted for the programs application. This technology

would increase the ability to thwart a possible terrorist attack at busy terminals. Another

application is to remove moving objects in a class room setting, such as a teacher from a video.

This would allow the students who were watching a video tape of the lecture to see the

blackboard/whiteboard without obstruction of the teacher as he moves back and forth during the

lecture. These are just a few of the many possibilities that can be accomplished by producing a

more useful image or video.

This project, sponsored by Coast Guard Academy ECE Section, produced software that

will allow a user to upload 5 to 10 images and produce a high-quality, digitally processed image

that removes an object (something that block the viewer’s line of sight) or distortions within the

4

image. This project produced similar software for a video. The software and its algorithms were

developed in MATLAB. A standard 6.0 mega pixel digital camera is used to take pictures and

record videos as well; however, the main program will adjust all uploaded pictures or videos to

fit the parameters of each algorithm. The project applies several fundamental methods of image

processing as well as more complicated techniques to enhance images and video for a variety of

applications.

Background

Digital images and video are presently used in many surveillance and data collecting

applications. These images or videos can be enhanced using digital image processing. Digital

image processing involves the use of computer algorithms to manipulate color, quality, size, and

objects in a video or image. For example, most government buildings have cameras recording

areas of significant importance. Often, these images or video recordings do not capture what is

intended by the human operators. The images and video can encounter external objects that

obstruct the view of the intended items, decreasing the quality and usefulness of the images and

videos. A better image or video with improved quality can be produced using several image

processing techniques. One such technique is collecting multiple images of the scene and

combining the relevant portions to create a better result. With this new defined method, there is a

way to remove the interference and improve the quality of images and video. Researchers have

developed several processing techniques, but they can only improve the images and videos in

limited scenarios [1]. When image and video processing was first developed in 1960, the

designed algorithms had many limitations and challenges due to the cost and the lack of

advanced computing equipment [1].

5

Overtime, processes for image improvement have been developed, but technical

challenges still persisted. The work, “Interactive Digital Photomontage” by Agarwala and his

researching team at University of Washington discussed collecting a set of images and

combining germane portion to create a better result called photomontage. By using

photomontage, it is possible, but difficult, to choose the good seams between parts of the images

[1]. Seams are pieces of pictures. There are more desired seams that can be found in other

images. By using the “good” seams of a given number of pictures, a better image can be

produced [1]. Some parts of this method are incorporated into the design part of this project. It

will be discussed later in detail.

Besides the difficulty of choosing good seams to create a clean image, current algorithms

can process only certain images and video. For example, windows movie makers only works

with .avi and mpeg files. Factors, such as the contrast intensity of an image, the size of

obstructions, pixel values of the obstruction relative to the background, and other factors, will

determine how well an image is processed. In other words, it works well with some pictures, but

works poorly with others.

Basic Concepts about Images

Generally, an image is stored in an array with different pixel values at different pixel

locations. The pixel values represent the intensity of the color. In standard gray scale image, each

pixel is represented using 8 bit binary. There are 256 gray levels, 0-255. White is 255, and black

is 0. In color images, three layers-- red, green, and blue-- are combined to produce other colors,

so each pixel of a color image has 24 bits. From this concept, the basic manipulation of pixel

values of an image is used to develop an algorithm. These algorithms can take the average or

median of images or videos. More complex algorithms, such as optimization method using

6

Graph Cut Method, are also used.

Averaging Filter

Averaging (or a low-pass filter) is used to sift out the high frequencies that represent the

interference. Sharp contrast in an image shows the presence of high frequency (i.e. background is

white, and the blocking object is black as demonstrated in figure 1) [2].

Result =

Figure 1. Average Filtering diagram.

To eliminate high frequency in images and video, averaging filter is used. Given a set of

five images of a person walking across a whiteboard with something written on it (Figure 4), the

resulting image is an average of every image. This is a pixel-by-pixel operation. The pixel values

representing the result image will be the average of pixel values of all images at the same

location as shown (i.e. same row and same column).

Equation 1, 2, and 3 are examples of how the pixel-by-pixel operation would be

programmed in MATLAB. MATLAB is used widely in this project since it is easy to use and

very compatible with other software.

 Equation 1

7

 Equation 2

 Equation 3

A1 is picture number one and A2 is picture number 2. The number n and m represent row and

column of each pixel on an image. For example, A1(1,1) represent the pixel value at first row

first column of the first image. In this case, the addition is divided by 5 because 5 is the number

of the total input images. Five is chosen to demonstrate this example because it is the minimum

number of input images that must be inputted by the user.

For video, the design solution is modified, but the fundamental concept is the same as for

images. Figure 5 displays how algorithm is designed.

Figure 2. Diagram of filtering video.

Basic Concept about Video

Conceptually, a video consists of many frames. Frames are the images in a video. As

time passes, the frame changes, similar to a flipbook. Each frame is slightly different from the

next. The first frame is very similar to the second frame. To average a video, the number of

8

frames to be averaged needs to be determined. For example, in Figure 2 above, the first three

frames are averaged to produce the first filtered frame, and the second three frames are averaged

to produce the second filtered frame. This process keeps going until the last three frames are

averaged. Then, all the filtered frames are used to create a new video.

Median Filter

Another filter used is a Median filter. The algorithm for this filter is similar to the average

filter. The difference is that instead of averaging the pixel values of images, taking median of the

pixel values of images is performed.

 Equation 4

Equation 4 above shows how to obtain the pixel value of the result image at the first row

first column. This can be accomplished by taking the pixel value at the first row first column of

every input images and taking the median of those values. The result of this median will be the

pixel of the result at first row first column. Again, the number 5 was chosen as the example

because it is the minimum input required to produce results.

Quantization & the Most Common Method

The quantization of pixel values and finding the most common values of sample images

and video can be done in a similar fashion to the other two methods. The quantization is used to

quantize the data and put them into bins so that it is possible to perform mode operation. For

example, if the desired value is determined to be 8, and the following data are given, [7, 9, 8, 22,

23, 22, 8, 22, 9]. The most common value would be 22, which is not the desired value. However,

with the quantization method, the output would be [8, 8, 8, 22, 22, 22, 8, 22, 8]. The most

9

common value would be 8 which is the desired value. From the example, the mode operation

will fail or generate wrong results in many possible circumstances. The quantization can group

close pixel values based on assigned number of bins to the same bin. This can make the mode

operation perform more effectively and accurately. An example of implementing this method

using MATLAB is shown below.

X = [A1(m,n), A2(m,n), A3(m,n), A4(m,n), A5(m,n)]

Result (m,n) = mode(quantizedPAM(X, 5, 255))

 ‘X’ is an array that contains the pixel values from the input images, and ‘m’ and ‘n’

represent location of the pixel in the image. This array is put through a created function called

‘quantizedPAM’ to quantize the data into the desired number of bits. In this particular example,

5 bits is chosen from the original 8 bits. Once the data is grouped, the mode operation can be

used to find the common value, and that represent the resulting pixel value.

 This method is extended further by taking neighbor pixels into consideration.

Commonly, a pixel is surrounded by its eight neighbors. An exception occurs for the pixels at the

borders of an image where there may be only two or three neighboring pixels.

 The way to implement this algorithm is very similar to the most common method. The

difference is that in order to get the resulting pixel values, the neighbor pixels and the pixel itself

at that location from all input images are taken into account. For example, figure 3 demonstrates

how to obtain the resulting pixel at the second row second column (2,2). All pixels from the

input images will be taken and passed to the “mode” operation to find the most common value.

This can be calculated as shown below.

10

Result(2,2) = Mode [Image1(1,1), Image1 (1,2), Image1 (1,3), …

 Image1(2,1), Image1 (2,2), Image1 (2,3)…

 Image1(3,1), Image1 (3,2), Image1 (3,3)…

 Image2(1,1), Image2 (1,2), Image2 (1,3), …

 Image2(2,1), Image2 (2,2), Image2 (2,3)…

 Image2(3,1), Image2 (3,2), Image2 (3,3)…

 Image3(1,1), Image3 (1,2), Image3 (1,3), …

 Image3(2,1), Image3 (2,2), Image3 (2,3)…

 Image3(3,1), Image3 (3,2), Image3 (3,3)…

 … until the last input image is taken.

 … Image5 (3,3)]

It is important to note that the data increases so significantly that quantizing may not be

necessary in this case. However, this is not a conclusion. A test is conducted to determine if the

quantization will be necessary. If the quantization process is needed, then the quantization levels

need to be defined properly or the resulting background of the final image could be distorted.

The result of this process is provided and discussed in the result section of this paper.

Graph Cut Method

The last design and more complicated than other method is called “Graph Cut Method.”

The Graph Cut Method involves a label, a matrix of values that will be used later to create a new

picture. Each data point in the labeling matrix represents the original image number. The final

11

image is generated by taking the pixels corresponding to the labeling matrix. Figure 3 illustrates

this concept.

Figure 4. Label Demonstration.

Figure 4 shows five uploaded images. The label identifys where the most desired pixels

occur. The final image will use the pixel values the label has shown. The graph cut method is a

process to find the “local best” labeling matrix. The result will not be the most optimal cost-

labeling matrix since the algorithm used in this method does not try all the possibilities since it is

impractical. Mathematically, for p images that are each N x M pixels, there are (P)N x M number

of label matrices possible. Even for a small image, the number of labels could be incredibly high.

For example, input contains10 images. Each has a size 100 x 100. The number of label matrices

would be 1010,000, which is a large number. For this reason, instead of doing that, graph cut

method applies complex mathematics concerning cost of data and neighbor cost to help define

the labeling. In short, the algorithm tries to find the labeling matrix that has the minimum cost.

12

Once the label matrix is found, the final image with preserved background and no foreground

obstruction can be created. Equation 5 is used to determine the total cost [5].

 Equation 5

The Data Cost, equation 6, is calculated using a probability distribution function to form

a color histogram. In doing this, the algorithm is basically finding the likelihood of the resulting

image containing a pixel value at a specific location from an input image; which is called the

method of maximum likelihood.

 Equation 6

The neighbor cost function, equation 7, determines the cost to change the current pixel

based on the pixel values above, below, to the right and to the left of the current pixel [5]. The

double lines, “|| ||,” in equation 7 represents a normalization function. The “ ” represents the

color vector (whether the current color is on the red, blue, or green color spectrum). The “p”

represents the current pixel. The “q” represents the neighbor pixels that are adjacent to “p.” For

each “p,” there will be four “q’s” unless the pixel has no bordering pixels on one side or two

sides (like a corner pixel). Figure 5 illustrates A as “p” and the numbers around “A” are “q’s.”

The shaded pixels are ignored in this neighbor cost calculation.

 Equation 7

13

Figure 5. Diagram of center pixel and its neighbors used to calculate Neighbor Cost.

Both the data cost and the neighbor cost are summed to yield the total cost. The total cost

will be used to help find the labeling matrix. If a low cost for pixel A is calculated, then the value

of ‘A’ should be changed corresponding to that low cost. After the cost is identified, a function

called “MAX_FLOW” will be used to do the actual graph cuts and find the minimum cost. The

graph cut process diagram is shown below in figure 6.

 The cuts for the graph cut method will start with a label with all ones. Alfa,α , and Alfa

bar, α are the nodes added into the graph. They represent the possible changes to the labeling

matrix. Initially, α is one, and α is two. The algorithm will process the graph (the graph is the

current matrix and all its associated data neighbor costs) and determine if some of the ones in the

original labeling matrix need to be changed to two to minimize the cost. If yes, it will change

those ones in the labeling matrix to twos. Then α becomes two and α becomes three. This

process keeps going continuously minimizing the cost until it reaches a specific threshold. This

process is called graph cut method with alpha expansion.

There are costs associating within the graph. The difference between the single cost and

the regular cost is that the single cost considers only a particular pixel while the regular cost

calculates the cost of the whole matrix. The single cost is used to calculate the cuts while the

regular cost is used to determine when the expansion should be stopped. Figure 8 below displays

the graph and the cost table explaining each cost from one node to another.

Edge Cost

14

Figure 6. An example of a graph and display of the cost from one node to another.

The right side table shows the cost assigned to each link in the graph [5].

The graph cut algorithm will be performed in loops to find the labeling matrix that cost

the least and update it. The final image will then be produced based on the pixel values and input

images identified in the resulting labeling matrix.

Historically, some algorithms require several images to yield good results [1]. For

example, images and frames that have a high percentage of the desired area obstructed will take

more photos of where that area is unobstructed to process a new image clearly. Still, other

algorithms cannot remove the obstructions or improve the quality of the image and video

effectively because either a user cannot identify the unwanted objects or the algorithm is not

fully automated. All these unaddressed issues demonstrate the need for this project which will

improve previous algorithms and the quality of images and video.

α
pt

Single cost data

α
pt Single cost data

e{p,a} Single neighbor cost due to added

node (from a to p)

e{a,q} Single neighbor cost due to added

node (from a to q)

e{p,q} Single neighbor cost (from p to q)

15

Objective

There are two parts to this design: an image software design and a video software design.

The image software will allow the user to upload of 5 to 10 high-quality images. The software

will process the images and generate a single high quality picture with little interferences or

distortions in the foreground. The video processing software will process the input of a low

quality video and a new video will be produced with minimal inference in the foreground. For an

in depth description of the quality of images and videos that will be used and produces see the

Business Plan in Appendix A.

 The image input must be 5 to 10 photos of at least 684 x1024 pixel resolution and 24 bits

per pixel. The minimum input specification required is a steady background with variable

obstructions in the foreground. A steady background was determined to be an object or

interference that takes up no more than an estimated 20% in the image. An estimation of 20%

was chosen because the user must input at least 5 images; this gives a higher probability that a

clear picture with desired results will be produced. The software will process the input in under 1

minute and generate a single improved image of the same quality that was used as input. The

sponsor has many demands that will affect the design. These dynamics have been collected from

the project sponsor and are examined in the Functional Requirements Document supplied as an

Appendix C.

The minimum video input specification is at least a 1 minute 128x128 pixel resolution

video with 8 bits per pixel. This program will need to efficiently process the input for the video

in 2 minutes. The same resolution and size of the video used as input will be generated.

The software should run on a standard PC with at least 1 GB of RAM (built in memory)

and 2 GHz processor. This standard is used in laboratories and by on average by people who use

16

computers. Video upload speed is then limited to no more than one minute increments because

computers with the standard specifications a have limited amount of RAM. Videos uses a lot of

RAM; after 1 minute on of uploading, RAM is almost completely filled on a standard computer.

A constraint was discovered during the research process. The video input must be long

enough so that the frames can be processed. If the video is too short, there will not be enough

information to retain for processing and the code will fail to process the video correctly. This

length was determined to be 5 seconds.

The program should run with no human interaction. The software should not allow the

user to change parameters based on the set of images or video. Instead, the research in this

project will discover which processing method is best for images and video. This image

processing technique will always be used in the software.

The Coast Guard Academy Electrical Computer Engineering Section providing provided

equipment for this project. The standard work station in the Electrical Engineering lab was used

in conjunction with MATLAB. The software program will be able to function on other standard

personal computers and compatible with future technology.

With regard to factors affecting the design solution, life cycle cost, and software

consideration have been the main concerns when the algorithm was designed. The reason for this

is because in the future, new technologies will evolve, thus the program will need trained people

who maintain the system and upgrade it to be compatible with those technologies. These

constraints will have a greater impact than support and external consideration constraints that do

not really apply to this project.

The project must be completed over the 2007-2008 academic year. The deliverables

include tested algorithms to process a variety of videos and images producing improved outputs.

17

A detailed schedule can be retrieved from the Project management plan attached as an Appendix

B. The software was expected to be completely designed by April 20, 2008. However, some of

the design requirements could not be met in such a limited time.

System Design

The design method is to start with easier digital image processing techniques and move

towards more difficult techniques. Ultimately, the best image processing technique will be

chosen for the software.

There are two parts to this design; an image software design and a video software design.

The image software will receive the input of 5 to 10 images. The software will process the

images, and a single picture will be generated as shown in Figure 7. Based on the required

specifications, the output will be a clear picture with nothing in the foreground and a fully visible

background.

Figure 7. Data flow for image processing software

 Similarly, the video processing software will receive the input of a one-minute video. The

software will process video, and a new video will be produced in real time (Figure 8). Real time

has no exact definition, but the sponsor requested a processing time of no more than two

18

minutes. The output will contain clear frames based on the requirements specifications with no

interferences in the foreground and a fully visible background.

Figure 8. Data flow for video processing software

In Figure 7 and 8, the processing box contains many processing techniques discovered by

the research; the techniques will consist of averaging filter, median filter, most common method,

and the graph cut method. These techniques will be discussed later in this section. The

processing box in Figure 9 demonstrates all the techniques that will also be compared and

contrasted. The decision box will evaluate the results and other factors, and decide what final

processing technique should be delivered. The consideration includes time of the processing, the

quality of the output, the compatibility with future technology, and other factors.

19

Figure 9. Detailed view of the processing box in Figure 7 and 8

 To construct a baseline for the processing techniques, the averaging software filter was

designed first. For the averaging algorithm, each color on the RGB spectrum for images was

processed separately using the equations 7, 8, and 9.

After each algorithm is created, it was tested. This project filtered a video recording

traffic and a person walking across a whiteboard with text written on it. Results were expected to

be low of quality for the averaging technique because it is a linear progression, meaning that it

weights the distorted pixel equally with the non-distorted. Ideally, the test processed 5 images

and then 10 images to test the maximum and minimum set forth by the requirements document.

The median filter program was programmed using equation 4. It was predicted that the

results would yield a white board where the content on the board can be read for both the images

20

and video after the median is taken. However, a better processing design solution is likely to be

found in one of the more complicated techniques.

The next design step was to apply uniform quantization method followed with mode

operations in MATLAB to find the most common pixel values. It was predicted that the basic

techniques of averaging and taking the median would be very time consuming. Other techniques

to decrease processing time will likely be needed.

The graph cut method will only be programmed for use with images. The Graph Cuts

Method, just like the other algorithms, required an input of 5 to 10 input images. Using equations

5, 6, and 7, it compared their pixel values and created a label.

The most common value with neighbor method is experimented. This method is

recommended because the team believed that data will need to be tweaked to improve result.

Results

The quality of the results varies for the four techniques. In a set of images, the averaging

filter takes a very short time to process, but the interference is still present in a faded path. In the

example of a person walking across the white board showing in Figure 10, the content of the

whiteboard is fully understandable despite the presence of faded interference; showing in Figure

11. On the other hand, the median filter performs the filtering very slowly. MATLAB shows that

with a set of six images with a size of 1122 x 2184 each, it takes 180 seconds, which exceeds the

desired 120 seconds time by the Requirements Document in Appendix C. This may indicate that

the program should limit input size. However, the quality of the resulting image is significantly

improved; the interference has almost completely disappeared. Only a small faded part remains.

Figure 10 displays a set of sample images, and Figure 11 displays the result of both filters.

21

Figure 10. A set of four sample input images

Figure 11. A filtered image using averaging filter (left) and median filter (right).

For the video processing part, the two filters produce very similar outputs. The moving

objects such as cars, train, and people, are faded in a path as they move and slowly appear as

they stop. The background content is completely preserved. To improve the quality of the filtered

video, the number of frames to be averaged needs to increased, but this change shortens the

22

video. By shortening the video, some information may be lost because many frames are averaged

to make one frame.

Another point is that it takes longer for the averaging filter to process inputs with more

number of frames per average. With the number of frames from 10 to 100, the time to process

exponentially increases from about 3 minutes to a few hours. However, the result from averaging

100 frames is much cleaner than that from 10 frames.

For the median filter, MATLAB seems to need more memory space and tends to process

slower than the averaging filter. This is because the median operation is the built in function and

the video consists of many frames. It takes time for the algorithm to recall the function every

time to take ‘median’ of the video. These two filters work well to an extent. However, the time

duration for processing is far from the requirements, and it is will be difficult to make it real

time.

In the most common method, image processing results depend on the quantization level.

Lowering the level or decreasing the bits has a possibility to distort the background. But a too

low quantization level may not work well. The results shown below have different bits. A

balance between quantization with fewer bits or more bits needs to be determined per

application.

Figure 12. Results of most common method quantizing with 3 bits (left) results of most common

method quantizing with 4 bits (middle), and result of most common method with 6 bits.

23

 The result clearly shows that 3 bit starts destroying the background though there are no

interferences. On the other hand, 6 bit quantization is not enough to remove the interferences.

With the use of complex mathematics along with alpha expansion algorithm, the graph

cut method can methodically determine the final labeling matrix and produce the clean results as

required. Many tests were conducted to confirm this claim. Some of the samples are shown

below. In figure 13, five sample images (top 5) are processed using this method with specific

variable sets. The values of the variables are provided; loop = 10, and scale = 255/5. The variable

loop and scale factor dictate the performance of algorithm. The scale factor needs to be taken

into account because the weight the algorithm evaluates the data cost and the neighbor cost is in

different scale set. The data cost has a range from 0 to 1 while the neighbor cost has a range from

0 to 255. Scale 255/5 is chosen as a baseline. The loop represent how many times the algorithm

is running to determine the labeling. If loop is equal 10, it means that the algorithm processes

from alpha = 1 to alpha = 5, and the loop restarts to 1 and stop at 5. Every loop, the algorithm

will calculate if each any of the members in the labeling needs to be changed.

The result is displayed in figure 13 below those input images, and the final labeling

matrix is also displayed next to the result. For the labeling matrix, black means the pixel is taken

from image1, and white means the pixel is taken from image 5. All others are somewhere

between 1 and 5. Processing time is also included.

24

Loop= 10
Scale = 255/5

Time to process
25-30 mins

Figure 13. Display the input and result of graph cut method. (top 5 images are the input,

bottom left is the final labeling matrix, and final result next to the labeling.

Figure 13 shows that the result based on this variable set is not completely clean. A small

part of interferences still presents. The reason for this discrepancy would result from the

suboptimal value of variables chosen in the algorithm. During the testing process, all these

variables are chosen based on the number of input images and the color level of the image;

which are 5 and 255 respectively in this case. The loop is chosen in such a way that the algorithm

actually has a chance to check all the labels 1 to 5.

Throughout the testing process, the values of the variables were changed in order to find

the optimal values for all variables and understand the effect from the change. The results from

those changes are provided below in figure 10. In this case, the test reveals that increasing

number of loops in the algorithm does not dramatically improve the result though it may change

the labeling matrix. This is illustrated in figure 14.

Figure14. Labeling matrix and result w/ loop =15 and scale factor = 255/5.

25

On the other hand, the scale factor has a significant impact on the result since it

determines the cost functions which directly relate to the calculation in finding the labeling.

Figure 15 shows the improved result which has no red interference.

Figure15. Labeling matrix and result w/ loop =10 and scale factor = 255/9.

To ensure that the algorithm is general, a slightly different set of input images were tested

(less interference in image 4 and more in image 5). Figure 16 and 17 show the input and outputs

of 2 different tests. The results for these two settings prove that the final result can be completely

clean. The point is that the variables need to be in the optimal range. For example, in this case,

scale = 255/8 yields the desired result.

Figure16. Top 5 = input images. Labeling matrix and result w/ loop =5 and scale factor =

26

255/5 (left). Labeling matrix and result w/loop = 10 and scale factor = 255/8 (right)

Overall, the results from this algorithm meet the requirements though they are not

completely clean for some inputs. After analyzing the results, the change of the variables, and the

process of the algorithm, the problem can be identified, but still has no definite solution at this

time. The problem for this algorithm is that the scale that yields to the desired result tends to

change in different input settings. In addition, the how to correct the scale factor is still undefined

though it is known that it is a function of number of input images and 255. More researches and

tests need to be conducted to provide better explanation and solution.

 One other problem observed is the nature of this method. This method performs on the

principle that it will pick the most common pixel from all of the input images and create the final

result from those values. Generally, pixels representing a background are the most common

values. However, in case of input images have much interference at the same location, the

algorithm would think that the pixels at that location actually are the background and pick them.

This could be seen from several tests mentioned. It is noticeable that the red interference presents

in almost all of the results.

If we look at the input images in figure 16 carefully, we could see that the algorithm is

doing what it is designed to do since at that region, 2 of the 5 images are red (image 2 and 3)

while the other three are all different (blue, white-cream, and brown).

To compare overall the results from all the algorithms developed, the same sample of

27

input images are processed, and the results are shown below. The results from the most common

method and most common with quantization method are not compared against these three results

since those algorithms produce a black and white result.

Average

Median Most Common Graph Cut

Expectedly, the result from graph cut method is the cleanest; only one small spot remains

the interferences. Median filter produces a decent result as well. However, the average filter is

not optimal enough to remove the inferences. Extensive faded interferences still present. It is

obvious that graph cut and the median filter meet the requirement concerning the quality of the

result. In terms of processing time, since the graph cut method requires high computational

power algorithm, it needs much more time. As a result, it still needs to be improved while the

other two filters have already met the criteria.

Conclusion

With today’s technology, the need for improved image processing software is growing as

the need for national security and imaging and video processing development continues to

increase. Due to some flaws of current algorithms, the processing methods researched and the

software to be produced will be needed to improve Homeland Security ability to increase the

national security. This project proposing many processing techniques can also be beneficial to

other organizations that widely use images and video applications in their facilities.

28

Research on better image processing techniques is still necessary to find more efficient

ways to process images and video. With extensive researches, the averaging filter is proved to

give a tolerable result, but it takes less time for processing. The result shows that averaging

technique produced a faded path for objects that moved throughout the videos just like in an

image. However, as the number of frames to be averaged increases, the path gets more faded.

The disadvantage of this frames increasing is that the process takes longer. For median filter, the

interference appeared to be completely removed; leaving a fully visible background. Yet, it

requires a long duration of time to process.

For both simple techniques, taking the average and median, one point to remember is that

there is a tradeoff between performance and time duration for processing. More factors and other

constraints are also included for the team to decide what the final solution will be. However, with

the continued research of new and more complex image processing techniques, these issues can

be minimized, and a final optimal filtering algorithm will be discovered to satisfy the

requirements.

References

[1] A. Agarwala, M. Agrawala, M. Cohen, A. Colburn, B. Curless, M. Doncheva, S.

Drucker, and D. Salesin. “Interactive Digital photomontage,” 2004.

[2] L. Eddins, C. Gonzalez, and R. Woods. Digital Image Processing using MATLAB. New

Jersey: Princeton Hall Pearson Education, Inc., 2004.

[3] H. J. Hsu, J. F. Wang, & S. C. Liao. (2007). “A Hybrid Algorithm With Artifact

Detection Mechanism for Region Filling After Object Removal From a Digital

Photograph.” IEEE , 16 (6).

29

[4] Y. Zhang, J. Xiao, & M. Shah. Motion Layer Based Object Removal in Videos. IEEE

[Online]. 9(28). Available:

http://server.cs.ucf.edu/~vision/papers/zhang_xiao_shah_WACV2005.pdf

[5] Y. Boykov, O.Veksler, R,Zabih. “Fast Approximate Energy Minimization Via Graph
Cuts.” IEEE Transaction On Pattern Analysis and Machine Intelligence.

Bibliography

[1] A. Agarwala, M. Agrawala, M. Cohen, A. Colburn, B. Curless, M. Doncheva, S.

Drucker, and D. Salesin. “Interactive Digital photomontage,” 2004.

[2] A. Criminisi, P. Pérez, & K. Toyama (2004, September). Region Filling and Object

Removal by Exemplar-Based Image Inpainting. IEEE. vol. 13, No. 9. IEEE [Online].

9(25). Available:

http://ieeexplore.ieee.org/iel5/83/29293/01323101.pdf?tp=&arnumber=1323101&isnumb

er=29293

[3] A. Kummert, J. Velten, & D. Maiwald, (1999). Image Processing Algorithms for Video

Based Real-Time Railroad Track Inspection. IEEE [Online]. 9(25). Available:

http://ieeexplore.ieee.org/iel5/6968/18758/00867321.pdf?tp=&arnumber=867321&isnum

ber=18758

[4] H. J. Hsu, J. F. Wang, & S. C. Liao. (2007). “A Hybrid Algorithm With Artifact

Detection Mechanism for Region Filling After Object Removal From a Digital

Photograph.” IEEE , 16 (6).

[5] J. C. Wood. Out-Lier Removal Algorithm Model-Based Coded Video. IEEE [Online].

9(25). Available: http://ieeexplore.ieee.org/iel5/7594/20708/00958063.pdf

30

[6] J. Davis. “Mosaics of Scenes with Moving Objects. In computer Vision and Pattern

Recognition,” (CVPR 98).

[7] L. Eddins, C. Gonzalez, and R. Woods. Digital Image Processing using MATLAB. New

Jersey: Princeton Hall Pearson Education, Inc., 2004.

[8] M. Kanefsky & C. B. Fong (1984, September). Predictive Source Coding Techniques

Using Maximum Likelihood Prediction for Compression of Digitized Images. IEEE

[Online]. 9(25). Available: http://ieeexplore.ieee.org/iel5/18/22744/01056953.pdf?tp=

&arnumber=1056953&isnumber=227 44

[9] P. Sand & S. Teller. Particle Video: Long-Range Motion Estimation using Point

Trajectories. IEEE [Online]. 9(25). Available: http://rvsn.csail.mit.edu/pv/pv.pdf

R. C. Gonzales, & R.E. Woods. Digital Image Processing (2nd Edition ed.). New Jersey:

Prentice Hall, 2002.

[10] R. Micah. (2007, July 13). mmread [Online]. 9(25). Available:

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=8028&obje

ctType=FILE.

[11] R. Raskar, A. Ilie, & J. Yu. “Image Fusion for Context Enhancement and Video

Surrealism.” Third International Symposium on Non- photorealistic Rendering, 2004

[12] S. Farsiu, P. Milanfar, & H. Takeda. Image Denoising by Adaptive Kernel Regression.

Department of Electrical Engineering, University of California at Santa Cruz.

[13] V. Kwatra, A. Schodl, I. Essa, G. Turk, and A. Bobick. Graphcut Textures: Image and

Video Synthesis Using Graph Cuts. ACM transaction on graphic, 2003.

[14] Y. Zhang, J. Xiao, & M. Shah. Motion Layer Based Object Removal in Videos. IEEE

[Online]. 9(28). Available:

http://server.cs.ucf.edu/~vision/papers/zhang_xiao_shah_WACV2005.pdf

