


Abstract 

This paper provides the system design of the autonomous ground vehicle being constructed by 

the United States Coast Guard Academy in the school year of 2006-2007 for the Intelligent 

Ground Vehicle Competition (IGVC).  Designing and building a fully autonomous vehicle for 

the IGVC put the theoretical knowledge of computer controls, electromechanical machines, 

communications, and system design into practice.   The first objective was to build a robot 

platform for the sensors and control unit. The second objective was to integrate a laser 

rangefinder, one web camera, one electronic compass, two shaft encoders, and a differential 

global positioning system (DGPS) receiver to form a working sensor unit.  The last objective was 

to implement a controller to guide the vehicle’s movement. 

 

During the school year, two major objectives were completed. The one not completed was the 

implementation of the vehicle’s motor controller and will be resumed next year.  This project is 

relevant to the USCG because it researches the control systems of autonomous vehicles and can 

be applied to the UAVs that will extend the capabilities of the fleet.   The United States Coast 

Guard’s (USCG) Command and Control Engineering Center (C2CEN) and Navigation Center 

(NAVCEN) are sponsoring the project.  The autonomous ground vehicle project challenges 

students to apply the skills and knowledge acquired over the first four years of the EE curriculum 

at the USCGA as well as graduate level skills of the student from the University of Rhode Island. 
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Introduction 

The goal of the project was to build an autonomous ground vehicle to compete in the 15th Annual 

Intelligent Ground Vehicle Competition (IGVC) in Rochester, Michigan on June 8-11, 2007. 

This would have marked the first time the United States Coast Guard Academy (USCGA) 

participated in the competition. The United States Coast Guard’s (USCG) Command and Control 

Engineering Center (C2CEN) and Navigation Center (NAVCEN) are sponsoring the project.  In 

order to compete, the autonomous ground vehicle should meet the design requirements specified 

in the competition rules. The competition consists of the design evaluation, an autonomous 

challenge and a navigation challenge [1].  

 

The project is important and relevant through its many applications for military and civilian use. 

The USCG has a need for project managers and engineers with an understanding of how 

autonomous ground vehicles work.  The IGVC project addresses these needs by providing 

students with the basic skills of project engineers. The work consists of constructing the physical 

robotic vehicle, incorporating various sensors and devices and acquiring the data from the 

sensors, and designing software which controls the movement of the robot and performs 

autonomous navigation.  

 

The background section covers the IGVC rules and requirements. Previous year’s submissions to 

the IGVC were studied to gain insight into the competition and autonomous vehicle designs.  In 

the objectives section, the project goals and requirements are discussed.  The system design 

section covers the plan to build an autonomous vehicle, how the plan was achieved, and the 
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major design decisions that were made.  The results achieved for the project are the following: 

complete construction of the vehicle and its propulsion system, integration of laser rangefinder, 

one web camera, one electronic compass, two shaft encoders, and a differential global 

positioning system (DGPS) receiver, and design of the motor controller. The team also 

completed separate power systems for the motors and the sensors. The results are further 

explained in design section. 

Background 

The IGVC is an annual event hosted, since 1992, by Oakland University in Rochester, Michigan 

[1]. The competition is sponsored by organizations such as Tank Automotive Research and 

Development and Engineering Center (TARDEC), Department of Defense (DOD), and the 

Association for Unmanned Vehicle Systems International (AUVSI) [1].  

 

The purpose of the IGVC is to offer students an opportunity to design, construct and test an 

autonomous vehicle to participate in a three-part competition. Furthermore, IGVC aims at 

providing a chance for students in the electrical engineering, mechanical engineering, and 

computer science and engineering fields to contribute their expertise toward creation of a single 

product that is a combination of technologies and knowledge of a broad range of disciplines [1]. 

 

An autonomous ground vehicle is a craft that is propelled through direct contact with the ground 

and is capable of automatic navigation. This craft can sense and react to its environment, and 

navigate solely on its sensors and the predefined objectives [2]. 
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In order for a team’s autonomous ground vehicle to participate in the competition, it must pass 

the qualification standards in the rules of the competition. The rules are explained in the 

objectives section. The vehicle is eligible to participate in the competition once it meets all 

qualification standards. The competition is broken into three events.  

 

The first is the autonomous challenge. The objective is to test the machine’s capability to travel 

through an outdoor course avoiding all obstacles on the track, while staying on the track within 

the 5 mph speed limit. Vehicles will have to travel up and down natural hills, with a gradient not 

more than 15%. The course consists of grass and pavement ground with obstacles and lines to 

direct the vehicles.  The lines will be painted white or yellow and be approximately three inches 

wide.  Obstacles on the course include; large orange traffic cones, natural objects such as trees 

and bushes, and potholes, indicated by solid black circles on the ground [1].  Figure 1 shows an 

entry from the 2006 competition during the autonomous challenge.  

 

Figure 1: Virginia Polytechnic Institute and State 
University - Gemini (2006) (courtesy of 

www.igvc.org) 
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The second part of the competition is the vehicle design. This is the only part of the competition 

that is mandatory for all vehicles.  Several judges will inspect the vehicle, read the vehicle’s 

project report, and listen to the oral presentation from the group.  The judges will score the 

vehicle’s design separately from the other two challenges and will specifically emphasize and 

encourage innovation and creativity in the application of hardware and software. The robot does 

not have to win, or even participate, in other parts of competition to win the design part of the 

competition. [1] 

 

The last part of the competition is the navigational challenge.  The goal is to move the vehicle 

autonomously from an initial position to a number of waypoints and return to its starting point, 

given only the target location’s latitude and longitude. Each vehicle will be allowed up to three 

attempts to navigate to as many waypoints as possible in seven minutes. The course is laid out on 

an area of approximately 1.8 acres.  Barriers are set up around the course and include trees, 

barrels, fences, and tents.  To successfully navigate to a waypoint the vehicle must come within 

two meters of the waypoint position.  Figure 2 shows a practice field for the navigation challenge 

[1]. 

Figure 2: 2007 Practice Map for 
the Navigation Course (courtesy 

of www.IGVC.org) 
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The team examined the technology and designs of the previous participants of the competition 

before starting the design of the vehicle. Vehicles which were successful in the different 

challenges of the competition were identified along with their innovative features. The team also 

examined the design reports for the autonomous ground vehicles that performed poorly in order 

to avoid making the same mistakes. However, these reports never provided ample information 

regarding the cause of poor performances. [1] 

 

In the 2006 IGVC, the Virginia Tech autonomous ground vehicle “Gemini” won the autonomous 

challenge. Gemini was a resubmission from the 2004 and 2005 competitions.  Some of the 

attributes of Gemini that contributed to its success were a tubular aluminum frame, saving 

valuable weight; a two-body design with independent motors on both front wheels, giving a zero 

turning radius; a plastic paneling with weather stripping, which protected the electronics from 

rain; an absorbed glass mat dry cell lead acid battery, which is a sealed battery and can be used 

when rolled onto its side; an onboard battery charger; and a digital camera with FireWire cable. 

[3]  

 

Virginia Tech’s “Johnny-5” won the 2006 IGVC navigation challenge. Johnny-5 was another 

resubmission from the 2004 and 2005 competitions. An attribute that contributed to Johnny-5's 

success was its onboard gas-electric hybrid power system, allowing for 10 hours of run time.  

Johnny-5 also incorporated a collapsible mast, allowing for easy transportation of the 

autonomous ground vehicle.   When the vehicle had to be moved, its six foot mast would fold 
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onto the top of the robot allowing quick movement and transportation. All sensors were 

connected to a laptop via a serial port card.  Lastly, Johnny-5 carried updated software, designed 

for seamless integration of all sensors in LabView [4].  

 

No one design guarantees success at the competition, so it is important to identify features and 

techniques implemented in the past winning designs since they provide great foundations for 

building autonomous ground vehicle. From this point, the goal is to build an autonomous ground 

vehicle that not only will compete in the navigation and autonomous challenges faster than 

previous submissions, but also incorporate new and innovations designs. 

Objective 

The goal was to create a fully autonomous ground vehicle that met the requirement specifications 

of, and qualify for the 15th IGVC which will be held June 8th to 11th
, 2007. To accomplish the 

goal, objectives were to design and construct the vehicle and its propulsion system, to set up and 

verify functionality of the sensors, and to design software to control and autonomously navigate 

the robot in accordance with the requirements specifications provided by IGVC. These 

objectives are covered in this section, and can be found in Appendix A. 

 

The vehicle must be propelled by direct mechanical contact to the ground. To ensure safety of 

the people and the surroundings, hardware governed maximum speed of five miles per hour is 

mandated. The vehicle’s propulsion system must have its power generated onboard.  The vehicle 

must be between 3ft to 7ft long, between 2ft to 5ft wide and at most 6ft tall, excluding the height 

of the emergency stop antenna. The vehicle must also carry a 20 pound cinder block. Even 

though the vehicle navigation is autonomous, to ensure safety and control of the vehicle’s 
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mobility a mechanical emergency stop (e-stop) must be present. The e-stop must be a red push 

button, a minimum of one inch in diameter. Its location must be in the center rear of the vehicle, 

at least two feet from ground level, but not to exceed four feet above the ground. This e-stop 

must be hardware based and not controlled through the software. In addition, activation of the 

mechanical e-stop must bring the vehicle to a complete stop.  

 

The vehicle also must have a wireless e-stop. The wireless e-stop must have an effective range of 

at least 50 ft. Similar to the mechanical e-stop, the wireless e-stop must be hardware based and 

not controlled through software.  The wireless e-stop must also bring the vehicle to a complete 

stop.  

 

The last construction requirement of the autonomous ground vehicle is the vehicle’s capability to 

perform in various weather conditions. The competition will take place in the event of light rain 

or drizzle, defined by the judges, but not in heavy rain or lightning. If the competition is held in 

wet conditions it is necessary the vehicle is waterproof since water inside the robot will ruin the 

electronic equipment and disable the vehicle. 

 

 The capabilities the autonomous vehicle must have are: ability to follow the lanes, detect and 

avoid obstacles and perform waypoint navigation. In the lane following phase, the vehicle must 

demonstrate that it can detect and follow lanes that are approximately three inches wide and 

painted on the ground. The competition will consist of a marked path over an area o 

approximately 60 to 120 yards long, by 40 to 60 yards wide. The vehicle must follow the 
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prescribed path to reach the target (end) point of the course. Figure 3 shows a 2006 participant 

performing lane following during the competition. 

 

 

Figure 3: University of Detroit Mercy - THOR (2006) 

(courtesy of www.igvc.org) 

During the competition, the vehicle must demonstrate that it can detect and avoid obstacles 

because the course will have several different objects along the path of the course which the 

vehicle must navigate around. Obstacles on the course will be various colors and shapes that may 

include construction drums, 5-gallon pails, pedestals, cones, and barricades. In addition, natural 

obstacles such as trees, bushes or plants and man-made obstacles such as a light post or street 

signs may also appear on the course. Several types of the obstacles used in the competition can 

be seen in the figures 1, 2 and 4 from previous competitions. 
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Last is the waypoint navigation challenge. In this challenge, the vehicle must prove it can find a 

path to several 2- meter navigation waypoints. The vehicle will have seven minutes to navigate 

to within two meters of as many waypoints as it can [1]. Depicted in figure 5, Brigham Young 

University's vehicle “Y-CLOPS” is participating in waypoint navigation. 

  

Figure 4: University of Michigan-Dearborn - 
SMART 2005 (courtesy of www.igvc.org) 

Figure 5: Brigham Young University - Y-CLOPS 
(2006) (courtesy of www.igvc.org) 
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The goal for December was to construct the operational vehicle with the hardware, sensors and 

power supply in place and manually control the vehicle through graphical user interfaces on the 

laptop. The project plan contains more information on project goals and deliverable dates.  It can 

be found in Appendix B. The goal for May 2 was to a have fully autonomous vehicle capable of 

participating in all parts of the autonomous ground vehicle competition and full documentation 

that describes how the project was developed.  

 

System Design 

 

Constructing an autonomous ground vehicle to meet qualification requirements can be divided 

into three sections: mechanical and propulsion system (vehicle design), autonomous navigation 

system (sensors), and power systems. The mechanical and propulsion system consisted of an 

aluminium frame, 4 ATV wheels, and a tank drive system. The power system consisted of 3-12 

volt batteries, 1-9 volt battery, 2-5 volt batteries and laptop power. Lastly, the autonomous 

navigation system consisted of a Dell laptop, a Creative webcam, SICK laser range-finder, 

Honeywell 3000 electronic compass, shaft encoders, and a Trimble DGPS system. In figure 6, 

the relationship between the navigation, movement control, and hardware can be seen. 
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Figure 6: Interaction between the three sections 

The electronic compass, cameras, DGPS, and laser are the sensors that aid in the autonomous 

navigation of the vehicle. 

 

For DGPS, the DGPS receiver used for determining the vehicle’s position is the Trimble 214 

DGPS. MATLAB was used to retrieve the position (longitude and latitude) and the time stamp 

from its data string. The DGPS outputs its data in the National Marine Electronics Association 

(NMEA) string.  The data type chosen for the NMEA sentence is the Recommended Minimum 

(RMC).  

For the electronic compass, the Honeywell HMR3000 is being used to obtain the robot’s 

heading. This electronic compass provides NMEA sentences in three different formats: HDG, 
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HDT, and HPR. The NMEA sentence chosen is the HPR. This data type represents heading, 

pitch and roll. Furthermore, MATLAB was used to obtain the heading from the HPR NMEA 

string to provide to the robot so that it could calculate the difference between the actual heading 

and the desired heading and make the appropriate turn to achieve that desired heading.  

Another sensor utilized is a digital camera. One camera will cover a 180° sweep of the robot’s 

front view. The camera will be placed on the center of the vehicle’s frame (behind the laser) 

elevated 2.17 ft above the ground to capture images of vehicle’s front view. The data retrieved 

from the camera is then filtered by the Hough transform (in MATLAB).  

The laser rangefinder utilized is the SICK Laser LMS221. The data retrieved from this sensor is 

obtained via MATLAB. The data retrieved is a continuous real-time scan of the laser making a 

180° sweep of the laser’s front view. This data essentially looks like an upper semi-circle that is 

uniquely deformed depending on the environment the laser is viewing. The factors that affect the 

laser’s scan are an obstacles size, distance from laser, and location.  

 

To gather the wheel rotational speed and direction of movement, two simple shaft encoders were 

built and programmed using MATLAB. Three magnetic sensors were placed in the side of the 

vehicle next to each of the front wheels. The permanent magnet is mounted in the sprocket of the 

wheel. All sensors were connected to digital I/O pins on the A/D converter (PC board). The three 

sensors were labeled as a distinct variable with one sensor used to monitor the distance, speed, 

and rpm by calculating the time it took the magnet to come close in contact with it. The other 

two sensors were used only for determining which direction the shaft is rotating to display if the 

vehicle was moving forwards or backwards. MATLAB code interprets the data received from the 
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A/D converter and converts it into speed over ground, distance traveled and direction. The shaft 

encoder sensor assembly is depicted in figure 7. 

 

 

 

Figure 7: Shaft encoder assembly 

The main concern for the vehicle was to easily incorporate equipment, and have compartments 

for all the equipment.  The first step was to get a rough drawing of the vehicle, to see what it 

might eventually look like.  After this was done, dimensions were added based on the IGVC 

requirements and what was required for size.  Once dimensions were added, the vehicle was built 

in Solidworks using 1”x1” square tubing.  The dimensions used were 3’x4’.  This would provide 

a vehicle that is within the size constraints, but also give ample space for equipment.  After 

designing this vehicle, a second vehicle was designed that was 2’x3’.  This vehicle also met the 

requirements and provided enough space for all the equipment, but used less material.  Figure 8: 

IGVC Vehicle Design shows the 2’x3’ vehicle frame from Solidworks.  
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Figure 8: IGVC Vehicle Design 

 

This design had several advantages for IGVC use.  On the front, there is a lip for the laser to 

mount on, with two vertical tubes in the center for the laser to be bolted to.  The compartment 

behind the laser mount is for batteries, and the charging system.  On the back of the vehicle there 

are 3 compartments on top of each other.  The lowest is for the motors, and the First Robotics 

controllers and systems.  The second is for the computer to motor and sensors interface, DGPS 

receiver, serial connection box, and other equipment that the operator does not need to access to 

get the machine running.  The top compartment is for the laptop computer and switch panel.  

Here the operator will be able to make changes as necessary and start the operation of the 

vehicle.  The compartments were designed this way to simplify equipment installation as well as 

make the building of the vehicle simpler.   
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After designing the frame, the wheel mounts, and antenna mounts had to be designed.  Figure 9 

shows a completed vehicle.                                                     

        

Figure 9: Front View of the Robot 

 

The electronic compass had to be mounted as far from motors and shafts as possible due to the 

interference they created.  This led to a tower being designed that is secured to the frame in 

several spots but is screw mounted so it can be removed if necessary. The tower can be seen in 

the front view of the robot in figure 9.   
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The DGPS antenna was mounted on the back part of the vehicle and can be seen in figure 10.  

The wheels were mounted to resemble a tank drive system in order to have a zero-turning radius.  

They can be seen inside picture of the robot in figure 10.  

 

Figure 10: Side View of the Robot 

 

The propulsion system for the vehicle is a tank drive system. It consisted of two motors coupled 

together on each side.  The two motors per side gave more torque so the vehicle would move 

quicker.  The system was set up so that the motors deliver power to all the wheels.  This 

minimized the turning radius of the vehicle, thus providing better navigation.  The motors are 

situated behind the back wheel so the chain runs forward to the back wheel sprocket, then 

forward to the front wheel sprocket.   

 

Since the sensors, devices, and motors required different voltages, two power systems were 

created. The decision was made to split the power system into two was based off a couple of 
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factors. First, the electrical or mechanical disturbance from the power grid connected to the 

motors could interfere with the continuous operation of the sensors. For example, the start of the 

motors will cause a voltage drop which could introduce an anomaly to the system. We also 

anticipated an implementation of the emergency stops and predicted that a simultaneous cutoff of 

power for the motors and sensors would result in a lengthy reset of the laptop and all of the 

sensors. Two separate power grids eliminate this problem and allow us to stop the robot without 

turning of the sensors. There are no concerns with the power budget since all of the distinct 

batteries are adequately provided by the electrical engineering and mechanical engineering 

departments. 

 

The power system for the sensors used two 12 volt batteries and three 9 volt batteries. The laser 

rangefinder required 24 volts to operate while the DGPS used 12 volts to function. In addition, 

one 9 volt battery is used for each e-compass and the wireless camera while the web cameras are 

powered by the laptop power. The second power system is for the drive train and control of the 

robot. This system requires a 12 volt battery to power two motors and a motor controller.  Figure 

11 shows the power supply we will build for the robot. 
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Figure 11: Power System for the Robot 

 

The power supply of the vehicle consisted of a “black box” type unit with a modular wiring 

system. The wiring system was intended to lead to a single weather-proof outlet on the outside of 

the robot. The purpose of this is to provide the capability of recharging the batteries necessary 

for powering the laptop, different sensors, and motors of the vehicle.  

 

The key component in the emergency e-stop system is an electric relay that cuts the power for 

the motors. When the motors are off, the gears stop the movement of the vehicle. The electric 

relay is controlled by an electrical circuitry (figure 12) that consists of the two transistors and an 

operational amplifier. The 12 volt sensor battery provides power for the e-stop circuitry.   The 

circuitry receives a logic signal from the Futaba analog servo circuitry (0.04-5V). A wireless link 

is established using the Futaba remote control unit and the Futaba FM receiver that work for the 

distances greater than 50 feet and thus meet a design requirement. The receiver is powered by 5 

volt rechargeable battery. The remote control unit has an internal rechargeable 12 volt battery. 

12 Volt Battery

Motors Motors Controllers

Laptop Power

Camera

12-Volt battery

DGPS(1)

Laser (2)

12-Volt battery3 9-V batteries

Electronic Compass

Electronic Compass

Wireless Camera
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Figure 12: Emergency stop (wireless and manual) 

 

A manual emergency stop is simply a pushbutton which is pressed grounds a negative terminal 

of the electric relay bypassing the electric circuitry of the wireless emergency stop. If the manual 

stop is energized the power of the motors can not be restored remotely. The manual e-stop switch 

can be seen in the lower right corner of figure 12. 

 

The last component of the design solution is the control system. In this component, the 

development and implementation of a single PD controller for steering and distance control of 

the autonomous ground vehicle was created in order to enable the vehicle to travel from one 

location to another. The controller will manage all of the robot’s movements and speed. In 

addition, it will work in unison with the data retrieved from the sensors to safely and accurately 

navigate on a prescribed path or to targeted waypoints. The autonomous control system will be 

comprised of four distinct state-space controllers. The results should verify that implementing 
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this PD controller will provide acceptable lateral and longitudinal control of the autonomous 

ground vehicle as well as excel in tracking accuracy and steady-state error. 

 

Figure 13: PD controller devised for the robot. 

 

Figure 13 represents the PD controller devised for the robot. The coefficients have not been 

determined yet and are pending since the vehicle has not been completely assembled. When the 

vehicle is completely built, the system I.D. can be calculated and thus the Kp and Kd values can 

be found which depend on the plant Gp (also known as the system I.D.). The Kp value is 

proportional to the error while the Kd value monitors the rate of change. The controller designed 

for the vehicle is simplified since it is only concerned with turning to a specified angle and 

driving a certain distance. The controller was designed this way since the input that would be 

provided to the vehicle would be the desired heading and range to a particular location. Lastly, 

the R(s) represents the voltage input for both left and right motors necessary for the vehicle to 

reach the desired location. 

The figure 14 presents a better illustration of how the entire vehicle control system works and the 

integration of the sensors. The system I.D. is modeled through the speed and heading transfer 

functions. Since the vehicle is not built yet, the equations can not be presented since they are not 
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accurate. Basically, what should be drawn from this figure is the user enters the desired position, 

the software (MATLAB code) controls the vehicle’s movements (i.e. voltage to the motors) and 

acquires data continuously from the sensors and feeds the data back to the computer. The 

controller, which is essentially the big box encompassing the speed and heading transfer 

functions, makes sure the vehicle reaches the desired position by comparing it with the actual 

position and makes suitable corrections when necessary to ensure the vehicle is facing the 

precise heading and has traveled the correct distance. 

 

 

Figure 14: Vehicle mechanical control scheme 
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During the building of the vehicle, several decisions were made.  It was decided to build a 2’x3’ 

vehicle because it is more cost efficient to the project.  A larger vehicle provides more room for 

equipment and a wider base for more stability, but comes at a higher cost and makes navigation 

in tight places more difficult.  A smaller vehicle was cheaper, navigated more efficiently, and 

still had enough room for the equipment needed.  The smaller vehicle was the best choice for this 

project.  

 

After deciding on the vehicle size, the next decision was to determine which materials to use for 

constructing the frame. There were several choices. The first material was the aluminum used on 

the first robotics vehicle, which had predrilled holes for easily putting pieces together.  It costs 

$39.95 per 6 foot segment. The second was aluminum bars, which is very strong and can support 

large amounts of weight but cost $56.72 per 6 feet. The third was aluminum tubing, which is 

strong, but is lighter weight because it is hollow.  Aluminum tubing costs $20.78 per 6 feet. The 

decision was made to use the aluminum tubing for several reasons.  The first reason was it 

provided the strength needed for our vehicle.  Secondly, it was not hard to drill through 

aluminum.  Finally, it was much cheaper than the solid aluminum bars, or the predrilled first 

robotics aluminum.     

 

The third decision was determining what type of wheels to use.  The competition requires a 

wheel that is capable to driving on pavement or grass. This meant the wheel needed to be well 

treaded and sturdy since the vehicle will be driving off road.  The wheel chosen is shown in 

Figure 15: Wheel used on vehicle is a large in order to provide enough clearance for the bottom 
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of the vehicle. It also had a sprocket mounted that is the correct tooth size, which helped with 

connecting the wheels to the power system.  The wheels have a shaft size of ¾”, which is larger 

than what was used on the first vehicle tested on.  Having a wheel with a sprocket mounted 

eliminated the need for the purchase of a sprocket with a shaft size of ¾”.   

 

Figure 15: Wheel used on vehicle 

 

The final decision, after all parts were decided upon, was how to build the vehicle.  The 

strongest, most permanent solution would be to weld all the parts together.  Another solution was 

to drill holes and mount all the pieces together using bolts and brackets.  It was decided to use 

bolts and brackets to put the vehicle together because welding requires practice and knowledge, 

which nobody on the team had.  By bolting the pieces together, the team was able to build the 

vehicle solely by the team’s efforts.  

  

The decisions on the propulsion system were driven by what parts were available at the USCGA.  

The team did not want to purchase parts for the propulsion system since the team already had 

access to a wide variety of equipment from the FIRST Robotics competition teams.  The motors 
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and the coupling were used from the 2006 FIRST Robot.  The rest of the propulsion system was 

taken from the 2003 FIRST Robot.   

 

The Futaba transceiver and the receiver were chosen for the wireless link of the remote e-stop 

because of the economic considerations. The academy already possessed this equipment. The 

control circuitry for the electric relay was necessary because a sufficient current supply was 

necessary in order to power the electromagnet of the relay. 

 

The team decided to build shaft encoders using three magnetic sensors, magnet and a MATLAB 

program because it was a cheapest option available. It was also faster to build the shaft encoder 

rather than ordering them. While there are numerous shaft encoders both coupled with motors 

and separate ones that are available on the market they tend to be expensive and in many cases 

incompatible with our vehicle design because of the motors that were already available and the 

wheel that are mounted on the stationary shaft. The shaft encoders were placed on the two front 

wheels of the vehicle since the vehicle is operating a left and a right motor to emulate a tank 

drive system. The shaft encoders are vital because they provide the distance traveled by the 

vehicle which is one of the parameters required by the PD controller in order to travel to a 

prescribed location. This sensor provides constant feedback as to whether the vehicle has 

achieved that prescribed distance. 
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The Trimble 214 DGPS receiver was used since it was provided from the beginning of the 

project. MATLAB was the chosen as programming language because not only is it a powerful 

and relatively easy-to-use computational tool, but it interacts very well with other sensors and 

devices. The RMC sentence was chosen because it provides the essential position, velocity and 

time data critical for autonomous ground vehicle to accurately navigate. In addition, the DGPS 

was chosen because it achieves an accurate position varying between 0.5 and 1 meter.  Lastly, 

MATLAB was used for integrating all other sensors and devices because it was less confusing 

and difficult for the user when all programs were written in one common language. This also 

created more ease for the user to identify any possible errors in the code. 

The Honeywell HMR3000 was used since this sensor was provided from the beginning of the 

project. The only relevant information from the HPR NMEA sentence used from the electronic 

compass was the heading. Pitch and roll were considered for determining if the robot is 

approaching a declining or inclining hill and how much speed to apply to the motors to ensure 

the robot can make way while maintaining the 5 mph limit. However, these variables were never 

used since the controller designed did not require this information.  

A digital camera was used since the pictures it took were digitized which made it possible for 

digital image processing techniques. Initially, three cameras were intended to be used to get an 

accurate 180° sweep of the robot’s front view. However, due to the lack of processing 

capabilities of the digital cameras presented to the team, the digital cameras were not able to take 

pictures simultaneously and thus fail to work afterwards. So the plan reverted to just using one 

digital camera. The purpose of using the digital camera was to capture several images in order to 

detect the yellow or white lanes which the autonomous ground vehicle must follow. The Hough 

transform was chosen because it identifies lines in an image. The Hough transform applies an 
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edge detection operator to a raw image (picture) and determines which lines fit most closely to 

the data in the image. To serve as an additional tool, the team decided to incorporate a wireless 

camera on the robot which displays on a remote laptop what the robot is viewing. 

 

The SICK Laser LMS221 was the particular laser rangefinder chosen since this sensor was 

purchased before the team started working on the project. The purpose of the laser rangefinder to 

detect obstacles within 8 meters and safely navigate around those obstacles that may be too close 

or are along the path to a targeted destination (waypoint). 

 

Results 

The team was successful in completing a majority of the requirement specifications. A new 

robot was constructed as the base frame for the IGVC vehicle with a length of 3 ft, width of 2.17 

ft and height of 5.17ft. This fulfils the dimension requirements 1-3 in appendix A. The vehicle’s 

design has a compartment built in it with the dimensions 26” x 15” x 15” which is able carry a 

payload of 2 lbs with the dimensions of 18”x 8”x 8”. The vehicle’s four ATV wheels and a 

mechanical propulsion system ensure that the vehicle maintains constant contact with the 

ground. The vehicle has 4 motors that are controlled by a system of Innovation First robotic 

controllers and have enough torque to move a 198.7 lb robot with an additional 20 lb payload.  

The vehicle’s propulsion system is independent since its power is generated onboard by three 12 

volt batteries. One12 volt battery runs the motors while the other two 12 volt batteries provide 

power for the sensors.  The mechanical E-stop is a mechanical push button located in the center 
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rear of the vehicle 2.5 ft above the ground. Furthermore, the E-stop is solely hardware based and 

completely stops the vehicle when activated. The wireless E-stop is a remote controller that is 

also solely hardware based and completely stops the vehicle when activated and worked well at 

distances of 50 ft and greater. All other requirements specifications were not met due to the time 

constraints. 

Besides meeting most of the requirement specifications, the team made significant progress 

toward completing autonomous navigation which consisted of lane following, obstacle 

avoidance, and waypoint navigation. The laser-rangefinder, electronic compass, DGPS receiver 

and shaft encoders and web camera have been integrated with the laptop computer.  MATLAB 

code was written for data acquisition from the mentioned sensors. This code can be found in 

Appendix C.  An electronic compass is used within a MATLAB GUI to control the turning of 

the vehicle to any desired heading. 

Overall, the team’s success in accomplishing many goals this academic year, built a solid 

foundation for future teams to further develop the project and participate in the IGVC.   

Conclusions 

The goal of the Autonomous Ground Vehicle project was to build a vehicle to participate in the 

IGVC.  During the 2006-2007 academic year, progress was made towards completing a vehicle 

to compete in 2008.  All the sensors necessary to have a working autonomous ground vehicle 

were integrated via MATLAB.    FIRST Robotics competition motor system to gain control of 

the movement of the motors.  By outputting voltages thru the digital to analog card in the laptop, 

the computer was able to control the speed and direction that each motor rotated.  At the end of 

the project, the vehicle was able to collect data from all sensors, turn a specified direction based 

off values provided from the e-compass, and move designated distances at constant speeds based 
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upon the input to the control function and the values read by the shaft encoders. The integration 

of the motor control system and the mapping program was never completed so the vehicle was 

never tested for operating as an autonomous ground vehicle. The most important lesson learned 

was to provide sufficient documentation for superiors on current project status and any progress 

achieved. In addition, it became evident that providing complete and detailed documents such as 

design specifications and requirements specifications are vital in determining when the project is 

finished and providing enough instructions so that others could reproduce the same product. 

While working with LT Everette, the team realized that MATLAB was insufficient because it 

could not process data fast enough to create a visual map for the vehicle to autonomously 

navigate.  In the future, a project like this should be written in C or C++ so that the processing 

power is not lost in a supporting program.  Designing and building an autonomous ground 

vehicle with four group members is not an easy task and requires all members of the group to be 

knowledgeable on all aspects of the vehicle operation. As a recommendation, future teams 

should consist of cadets from the electrical and mechanical engineering fields since the project 

requires knowledge and skills from both majors. If this recommendation is considered, 

successful completion of the project by the deadline becomes more feasible. 
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Appendix A- Project Plan 
 

Autonomous Ground Vehicle 
PROJECT PLAN 
09 OCTOBER, 2006 

Purpose:  The purpose of this project is to design and build an autonomous ground vehicle 
to compete in the Intelligent Ground Vehicle Competition.  A fully autonomous vehicle will 
compete in three areas: navigation, obstacle avoidance, and inspection.  The navigation 
competition requires the vehicle to maneuver around obstacles while moving from waypoint to 
waypoint, then back to the start area. The obstacle avoidance competition has the vehicle 
maneuver around obstacles while staying on the “road,” white lines in the grass.  The final 
competition, the design, is an inspection to ensure the vehicle meets specific design 
requirements. 

Organization   
Project Sponsor:  C2CEN, TISCOM, LT Everett 
Project Advisor(s):  CAPT Hartnett, LCDR Godfrey 

Team Member(s):  1/C Tomas Laucys, 1/C Adrian Ulanoff, 1/C Nathan Morello 

Goal 
The goal of the Autonomous Ground Vehicle project is to have a fully functional 
autonomous ground vehicle to compete in the 15th annual Intelligent Ground Vehicle 
Competition in Rochester, Michigan.  

Technical Challenges 
Challenge 1: System Integration 
 The challenge of integrating the GPS, laser rangefinder, and video feeds will be handled 

mostly by LT Everett.  It will include sending data from the sensors to the laptop, then 
interpreting the data, then sending back the results of the interpretation. 

Challenge 2: Autonomous Control 
 This challenge will require a program that will run the vehicle depending on the 

surrounding area.  It will be based upon the work done last year by ENS White on 
controlling the autonomous blimp.   

Challenge 3: Robot Build/Design 
 This challenge will require the team to design and build a robot that can be used during 

testing phases first semester.  It will be based upon the designs found from past projects 
that worked well.   
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Action Items/Responsibilities 
This should be a specific list of all the tasks that need to be done this year to accomplish your 
goal(s).  Each item should include who is responsible for the item whether a specific team 
member, the entire team, a contractor, project advisor or the sponsor, etc.  Don’t forget to 
include required class submissions. 
 
1. Interface all sensors with LT Everett’s program. Entire Team.  
2. Purchase Image Acquisiton Toolbox for Matalb. 1/C Morello 
3. View live video in Matlab and perform Hough Transform for edge detection. 1/C Morello 
4. Build a temporary robot for testing. 1/C Morello 
5. Test line detection on football field. 1/C Morello 
6. Perform obstacle detection in Matlab using SICK laser range finder. 1/C Laucys 
7. Design and construct portable power source for the robot components. 1/C Laucys 
8. Design robot motion control software. 1/C Laucys 
 

 

Timeline 
This should be a specific list that states the date when each of the above items will be 
completed.  Some items are included below. 
 
  
 Nov ___:  Draft Fall Paper due to Project Advisor. 
 Dec ___:  Fall Presentation  
 Dec ___:  Fall Paper/Project Notebooks due. 
 May ___:  Spring Project Presentation 
 May ___:  Spring Paper/Project Notebooks due. 

 
 
Project Members: 
 
___________________________________  Date: _____________ 
 
___________________________________  Date: _____________ 
 
___________________________________  Date: _____________ 
 
 
 
Project Advisor: 
 
___________________________________  Date: _____________ 
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Appendix B- Requirements Specifications 
 

 

Autonomous Ground Vehicle 
Requirements Specification 

22 October, 2006 
 

Project Sponsor:  C2CEN, NAVCEN, LT Everett 
Project Advisor(s):  CAPT Hartnett, LCDR Godfrey 
Team Member(s):  1/C Tomas Laucys, 1/C Adrian Ulanoff, 1/C Nathan Morello 
 
Background: The Intelligent Ground Vehicle Competition has existed since 1992. Since then, 
numerous schools and universities have participated in the competition and have allowed their 
students to learn, design and implement the skills they have gained in their respective 
undergraduate and graduate programs. The Unites States Coast Guard Academy has decided to 
participate in the competition for the first time. 
 
This project is of great interest because the education and technology it presents relates to a wide 
variety of fields, particularly electrical engineering. In addition, not only does this project arise 
great interest in an education manner, but its practicality for society is what stimulates a curiosity 
in all minds.  
 
The technology of an autonomous ground vehicle will, in the future, create all modes of 
transportation in a safer fashion by removing an actual human being from being the operator of 
every machine. In addition, this can prevent the loss of lives by creating all kinds of military 
crafts that do not need humans to control them. The autonomous ground vehicle shows a very 
promising future. In the previous competitions, teams have achieved remarkable results. 
However, every team strives to achieve better results than previous years.  
 
Problem Statement: The objective of our project is to build an autonomous ground vehicle to 
compete in the 15th Annual Intelligent Ground Vehicle Competition (IGVC) in Rochester, 
Michigan. 
 
Requirements:  
 

Level Sponsor Need Engineering 
Requirement 

Justification 

1 Design Must be a ground 
vehicle propelled by 

direct mechanical 
contact to the ground. 

It is required to 
qualify to participate 
in the competition. 

2 Vehicle Dimensions  They are required to 
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qualify to participate 
in the competition. 

2a Length 3ft to 7ft inclusive  
2b Width 2ft to 5ft inclusive  
2c Height Less than or equal to 

6ft 
 

3 Propulsion Vehicle power must 
be generated onboard.  

If the propulsion 
system wasn’t 

independent, the 
ground vehicle 

wouldn’t be 
autonomous. 

4 Mechanical E-stop    Besides being a 
criterion to qualify for 
the competition, the 
vehicle would need 

this if the wireless e-
stop fails. 

4a Construction The E-stop button 
must be a push to 

stop. 

 

4b Color Red  
4c Diameter 1"  
4d  Location Center rear of vehicle  
4e Height At least 2 ft at most 

4ft above the ground 
 

4f Implementation Vehicle E-stops must 
be hardware based 
and not controlled 
through software 

 

4g Operation Activating the E-Stop 
must bring the vehicle 

to a complete stop. 

 

5 Wireless E-stop Must be wireless  
 

If the vehicle is not 
within reach of any 
human contact, the 

vehicle must have the 
ability to be stopped 

at any time. 
5a Range At least 50 ft  
5b Implementation Vehicle E-stops must 

be hardware based 
and not controlled 
through software.   

 

5d  Activating the E-Stop 
must bring the vehicle 
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to a complete stop. 
6 Max Speed For safety, a 

maximum vehicle 
speed of five miles 

per hour will be 
enforced.  

Besides being a 
criterion to qualify for 
the competition, this 

speed ensures the 
safety for the vehicle 
and its surroundings. 

6a Implementation All vehicles must be 
hardware governed 
not to exceed this 
maximum speed. 

 

7 Payload  Each vehicle will be 
required to carry a 

payload to 
demonstrate the 

vehicle’s design can 
withstand the extra 

load and still perform 
its tasks. 

7a Weight 20 lb  
7b Length 18"  
7c Width 8"  
7d Height 8"  
8 Lane Following The vehicle must 

demonstrate that it 
can detect and follow 

lanes. 

Since the course will 
consist of a marked 

path of white chalk on 
grass, the vehicle 
must follow the 

prescribed path to 
reach the target (end) 
point of the course. 

9 Obstacle Avoidance The vehicle must 
demonstrate that it 

can detect and avoid 
obstacles. 

Since the course will 
have several different 
objects along the path 

of the course, the 
vehicle must have 

some means of 
finding a path around 

those obstacles. 
10 Waypoint Navigation Vehicle must prove it 

can find a path to a 
single 2 meter 

navigation waypoint. 

In order for the 
vehicle to be 

autonomous, it must 
be able to navigate to 
any prescribed point 
in a course within a 
specified degree of 



Appendix B 

accuracy. 
11 Weather Proof The competition will 

take place in the event 
of light rain or drizzle 
but not in heavy rain 

or lightning. 

Since the competition 
will be held in an 

environment where 
weather can create a 

hindrance on 
electrical and 

mechanical systems, 
the vehicle must be 
able to endure the 

elements and 
complete all of its 

tasks simultaneously. 
 

 
References: The official IGVC rules can be found at http://www.igvc.org/rules.html 
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Appendix C- Support Plan 
 

Autonomous Ground Vehicle 
SUPPORT PLAN 
November 22, 2006 

Purpose:  The objective of our project is to build an autonomous ground vehicle to 
compete in the 15th Annual Intelligent Ground Vehicle Competition (IGVC) in Rochester, 
Michigan. In order to qualify and participate, the autonomous ground vehicle must follow the 
design and functionality requirements specified in the rules for the competition. Once the judges 
have determined the autonomous ground vehicle has met the requirements, the group may 
commence with the rest of the competition which consists of an autonomous challenge, a 
navigation challenge, and a design challenge. 

Design Solution:   The basic composition of design solution consists of the 
construction of the vehicle, the implementation of the sensors, and the autonomous control 
system. 

For the construction of the vehicle, the objective is to ensure it is built according to the 
requirement specifications laid out in the competition rules. For the power supply of the vehicle, 
a “black box” type unit with a modular wiring system will be constructed. The wiring system 
will ultimately lead to a single weather-proof outlet on the outside of the robot. The purpose of 
this is to provide the capability of recharging the batteries necessary for fueling the laptop, 
different sensors, and motors of the vehicle. Another aspect for the construction of the vehicle is 
the mechanical and wireless e-stops. The mechanical e-stop will be constructed according to the 
requirements specifications mentioned in the competition rules. For the wireless e-stop, a remote 
control having a single toggle switch will be constructed. The wireless e-stop system will be 
implementing HF receivers. When the toggle switch is manipulated, a relay switch on the vehicle 
will be energized to either connect or disconnect depending on the state it was previously at. This 
action will either provide or cease power to the motors. The next concern with respect to 
constructing the vehicle is satisfying the max speed requirement. To accomplish this, the 
diameters of the gears will be adjusted to allow the vehicle to accelerate at a maximum speed of 
5 mph given that the vehicle is completely built and is able to carry the required payload. 
 
 The next section of the design composition is the implementation of the sensors. The first 
objective of this section is to incorporate all the sensors into MATLAB. The sensors that will be 
utilized for this vehicle are DGPS, electronic compasses (e-compasses), digital cameras, and a 
RTK laser. Two cameras will be placed on the left and right side of the vehicle and used for lane 
detection. One camera will be placed in the middle–front of the vehicle and used for observing 
obstacles. The data retrieved from the cameras on the sides of the vehicle will be filtered by the 
Hough transform (in MATLAB) to detect the necessary lines for the vehicle to follow. With the 
RTK laser, the data retrieved from this sensor will be entered into MATLAB and used to detect 
obstacles within a specified range and act accordingly if obstacles are too close or are along the 
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path to a targeted destination (waypoint). For the rest of the sensors, the DGPS and e-compasses, 
the data retrieved from these sensors will be entered into MATLAB to identify and compare 
location (latitude and longitude), heading, and speed of the vehicle.  
 The last component of the design solution is the autonomous control system. The 
autonomous system requires the development and implementation of intelligent and stable fuzzy 
logic controllers for the purpose of steering and speed control of the ground vehicle. The 
autonomous control system will be comprised of four distinct fuzzy logic controllers. There will 
be a controller for driving, braking, steering, and simultaneous operation of steering and driving. 
If the autonomous system is developed correctly and as intended, the results should verify that 
implementing fuzzy logic controllers not only provide acceptable lateral and longitudinal control 
of the autonomous ground vehicle, but also excel in tracking accuracy, steady-state error, control 
chatter, and robustness of this control system.   
 The manufacturability criteria factored the most into the decision because it looks at the 
design of the solution. It enabled the team to be creative, discover any potential conflicts, and 
come up with an optimal design solution. Due to the manufacturability criteria, it supports the 
importance of implementing fuzzy logic controllers for the autonomous ground vehicle. Through 
extensive research, it has been noted that fuzzy logic controllers guarantee stability, uncouple 
steering control from speed control, and provide easy incorporation of braking while facilitating 
the incorporation of control heuristics.  
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Support Considerations: 

Economic: 
The project’s funding source is C2CEN and NAVCEN. The project’s budget consists of 
$10,000 provided from distributed funds from C2CEN and NAVCEN. Each sponsor 
provided $5,000 toward the project. In addition to these funds, the project has a smaller 
but unknown amount of funds provided by USCGA. So far, these funds have provided 
for the acquirement of the MATLAB image acquisition toolbox, the MATLAB fuzzy 
logic control toolbox, and additional batteries. The money must be spent by the end of the 
project or completion of it which is around April 2007. The project does not have to 
compete for funding. 

Manufacturability: 
The design will be built by constructing the multiple systems comprising the autonomous 
ground vehicle, followed by integrating all the systems into the final product. The 
autonomous ground vehicle’s systems will consist of the robot itself, the sensors, power 
supply unit, and the software (the brain). The wireless e-stop is not another system, but it 
is important to note, since the judges will have this remote control device to use at their 
disposal. Pertaining to the robot, the platform was obtained from the mechanical 
engineering department of USCGA. This platform consisted of the main chassis that is 
comprised of the four wheels, the two motors, a battery, gears, and connections between 
the power supply (motors and battery) and the wheels. Ultimately, the robot will be 
comprised of three dependent systems. Among the software system of the project, there 
will be four subsystems (four distinct controllers) which autonomously control the 
vehicle’s motion. There are no specific concerns associated with the building design as 
our group is building the project ourselves. 

Sustainability and Reliability: 
The sponsor’s sustainability and reliability requirement is to build an autonomous ground 
vehicle that will be able to participate in future competitions and allow for other teams 
who might want to enter the competition to modify and improve upon the design. The 
type of spare parts required to maintain this reliability is batteries, wheels, and gears. As 
far as the number of spare parts to have necessary for emergencies, it is recommended the 
following are on hand: three 12 volt batteries, six 9 volt batteries, two sets of linkage, and 
four wheels. These spare parts will be stored in the Electrical Engineering lab. 

Life-Cycle Costs: 
Life-Cycle costs are not applicable to the project since our project is not intended for use 
by the Coast Guard. The sole purpose of our project is to have a complete product that 
will qualify and participate at a competition. 
 

External Considerations: 

Environmental: 
The design has a minimal impact on the environment. The batteries utilized for the 
vehicle during the design and testing phases will be discarded appropriately in 
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accordance with Coast Guard HAZMAT regulations. In addition, rechargeable batteries 
are implemented as another source of power. There is no need to dispose of our 
equipment at the end of its serviceable life since our vehicle should be able to last 
indefinitely. To be specific, its life expectancy should exceed the duration of the 
competition. However, if one wishes to disassemble the autonomous ground vehicle, all 
the parts of the robot are either recyclable or reusable. While carrying out all of these 
cautions mentioned above, these actions are in accordance with the Federal and State 
regulations (EPA) that preserve the environment. 

Health and Safety: 
The design has a minimal to no impact on the user and public’s health and safety. In 
regards to health and safety, the vehicle has a mechanical and a wireless e-stop, a max 
speed, and a weather proof requirement. The wireless e-stop would be used if the vehicle 
is not within reach of any human contact. The justification for having the e-stops is so 
that the vehicle has the ability to be stopped at any time. The vehicle would need the 
mechanical e-stop if the wireless e-stop fails. The max speed of 5 mph ensures safety for 
the vehicle and its surroundings. Lastly, the weather proof requirement is necessary for 
the user and the public’s health and safety as the vehicle may be operating in weather 
conditions of light rain or drizzle. Water could have an adverse and dangerous effect on 
the mechanical and electrical systems of the vehicle. Our design complies with Federal 
and State regulations by requirement specifications governed by the competition rules 
which ensure the health and safety for the user and the public. There is no special training 
required for users to understand our solution’s health and safety impact. 

Ethical, Social & Political: 
Future application or use of this vehicle may have a purpose for use in the military fields 
and in civilian transportation. Therefore, it is important to consider the possibilities of the 
social, ethical, and political impacts that our design will have on everyone’s lives. 

Software Considerations: 
Software Considerations is not applicable to our project because there is no private or 
personal information that is disclosed when entered into our autonomous ground vehicle. 
The only information required by the autonomous ground vehicle are destinations 
(navigation waypoints) which it must know in order to attempt to reach those prescribed 
target locations.  
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Appendix D- MATLAB Code 
SICK LASER CODE— 
start_sick.m 
commport = 'COM1'; 
baud = 9600; 
  
% This function starts the SICK laser and places it into continous  
% scanning mode. 
  
% Construct telegram to request an acquisition 
startmsg = [02 00 02 00 32 36 52 08]; 
  
sick_port = serial(commport,'BaudRate', baud); 
set(sick_port,'InputBufferSize',900); 
fopen(sick_port); 
  
% Flush the serial buffer on the sick port 
if sick_port.BytesAvailable 
    fread(sick_port,len,'uint8'); 
end 
  
% Write start telegram to Sick laser to start continous scanning 
fwrite(sick_port,startmsg,'uint8','async'); 
delay(sick_port,0); 
  
hold on; 
while (2 < 3) 
    scandata = get_scan(sick_port); 
    clf; 
    plotscan2(scandata); 
    pause(.75); 
    drawnow; 
end 

get_scan.m 
function scandata = get_scan(sick_port) 
  
% This function dumps the current serial buffer to a variable, parses 
% a scan output, converts measurement data, and outputs a vector of 
% 181 ranges. 
  
clear scandata; 
clear msg; 
  
% Read the contents of the serial buffer 
delay(sick_port,0); 
if sick_port.BytesAvailable 
    msg = fread(sick_port,sick_port.BytesAvailable,'uint8'); 
else 
    msg = []; 
end 
flushinput(sick_port); 
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msg = msg'; 
bytecount = 369; 
for n = 6:(900-3); 
    if (msg(1,n) == 2) && (msg(1,n+1) == 128) && (msg(1,n+2) == 110)              
        if (n+bytecount) <= (900-3); 
            scan(1,:) = msg(1,(n+7):(n+7+bytecount)); 
            break; 
        else 
            scandata = []; 
            break; 
        end   
    end 
end 
 
plotscan_buffer.m 
degree = 1; 
for n = 1:2:361 
        scandata(1,degree) = scan(1,n) + (scan(1,n+1) * 256); 
    degree = degree+1; 
end 
scandata = scandata'; 
 
function plotscan_buffer(scandata) 
  
% This function plots a single scan of data from the Sick Laser 
hold on; 
angle = 1:181; 
angle = angle'; 
rdir = angle * pi/180; 
for n = 1:327 
    [x y] = pol2cart(rdir, scandata(:,n)); 
    fill(x,y,'g'); 
    axis([-8500 8500 -500 8500]); 
    k = strcat('Plot of Sick Data - Scan: ', num2str(n)); 
    title(k); 
    xlabel('Distance - mm'); 
    ylabel('Distance - mm'); 
    pause(.25); 
    drawnow; 
    clf; 
end 
hold off; 
end 

GPS CODE 

GPS.m 
clear; 
  
disp('Trying to connect to sensor...'); 
h = serial('COM1'); 
h.baudrate = 38400; 
set(h, 'Parity', 'odd'); 
h.terminator = 'CR/LF'; 
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fopen(h); 
disp('Connected to Heading Sensor...'); 
  
%fwrite(h, '*S'); 
  
headingdata = {}; 
i = 1; 
  
disp('Recieving data:'); 
  
while (1) 
    tic; 
     
    flushinput(h); 
   % fwrite(h, '*Q'); 
    [data,null] = fscanf(h, '%s'); 
     
    headingdata{i,1} = data; 
    disp(headingdata{i,1}); 
    a = toc; 
     
    headingdata{i,2} = a; 
    i = i + 1; 
end; 
 

ROBOT CONTROL CODE 

robot_turn.m 

function varargout = robot_turn(varargin) 
% ROBOT_TURN M-file for robot_turn.fig 
%      ROBOT_TURN, by itself, creates a new ROBOT_TURN or raises the existing 
%      singleton*. 
% 
%      H = ROBOT_TURN returns the handle to a new ROBOT_TURN or the handle to 
%      the existing singleton*. 
% 
%      ROBOT_TURN('CALLBACK',hObject,eventData,handles,...) calls the local 
%      function named CALLBACK in ROBOT_TURN.M with the given input 
arguments. 
% 
%      ROBOT_TURN('Property','Value',...) creates a new ROBOT_TURN or raises 
the 
%      existing singleton*.  Starting from the left, property value pairs are 
%      applied to the GUI before robot_turn_OpeningFunction gets called.  An 
%      unrecognized property name or invalid value makes property application 
%      stop.  All inputs are passed to robot_turn_OpeningFcn via varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 
  



Appendix D 

% Edit the above text to modify the response to help robot_turn 
  
% Last Modified by GUIDE v2.5 09-Dec-2006 10:01:50 
  
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @robot_turn_OpeningFcn, ... 
                   'gui_OutputFcn',  @robot_turn_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
  
  
% --- Executes just before robot_turn is made visible. 
function robot_turn_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to robot_turn (see VARARGIN) 
  
% Choose default command line output for robot_turn 
handles.output = hObject; 
  
% Update handles structure 
guidata(hObject, handles); 
  
% UIWAIT makes robot_turn wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 
  
  
% --- Outputs from this function are returned to the command line. 
function varargout = robot_turn_OutputFcn(hObject, eventdata, handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Get default command line output from handles structure 
varargout{1} = handles.output; 
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function act_head_Callback(hObject, eventdata, handles) 
% hObject    handle to act_head (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of act_head as text 
%        str2double(get(hObject,'String')) returns contents of act_head as a 
double 
  
  
% --- Executes during object creation, after setting all properties. 
function act_head_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to act_head (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
  
  
function des_head_Callback(hObject, eventdata, handles) 
% hObject    handle to des_head (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of des_head as text 
%        str2double(get(hObject,'String')) returns contents of des_head as a 
double 
  
  
% --- Executes during object creation, after setting all properties. 
function des_head_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to des_head (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
  
% --- Executes on button press in pushbutton1. 
function pushbutton1_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
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function difference_Callback(hObject, eventdata, handles) 
% hObject    handle to difference (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of difference as text 
%        str2double(get(hObject,'String')) returns contents of difference as 
a double 
  
  
% --- Executes during object creation, after setting all properties. 
function difference_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to difference (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 

robot_turn_control.m 

function robot_turn_control 
  
%Enter robot_turn_control to run this equation. 
% 
%Function Name:     robot_turn_control 
% 
%Parameters:        none 
% 
%Returns:           none  
% 
%Description:       This function is the callback for the robot_turn GUI. 
%                   It reads in the desired heading from the GUI, the 
%                   actual heading from the compass, and will turn the 
%                   vehicle until the headings are less than 1 degree 
%                   apart.  As it runs it continuously updates the GUI 
%                   display with the actual heading and difference between 
%                   the actual and desired headings. 
% 
  
  
% Initialize the output to the D/A converter 
ao = analogoutput('mcc',0); 
chans = addchannel(ao,0:1); 
set(ao,'SampleRate',500); 
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% Put the value of 2.9 volts on each motor, stopping each from running 
putdata(ao,[2.9 2.9]); 
start(ao); 
  
% Read in the compass heading 
act_head=heading_nate 
  
% Set the handles for the text boxes in the GUI 
h_des=findobj('Tag','des_head'); 
h_act=findobj('Tag','act_head'); 
h_diff=findobj('Tag','difference'); 
  
% Set the actual heading text box to the value read 
set(h_act,'String',act_head); 
  
% Get the actual value from the string in the text box 
actual=get(h_act,'String'); 
% Get the desired value from the string and change it to a number 
desired=str2num(get(h_des, 'String')); 
% Change the actual value from cell format to matrix format, then change 
%   the string value in the matrix to a number. 
act=cell2mat(actual); 
actu=str2num(act); 
  
% Solve for the difference between the actual and desired headings. Set the 
%   string in the GUI for the difference to the correct value 
difference=actu-desired; 
diff=num2str(difference); 
set(h_diff,'String',diff); 
  
% Find which direction the robot should turn depending on the difference 
%   between the headings.  
if (difference< 180) & (difference > -180) 
    if difference >0 
        turn = 'right'; 
        turn_val=difference; 
    else  
        turn = 'left'; 
        turn_val=abs(difference); 
    end 
else 
    if difference> 0 
        turn = 'left'; 
        turn_val=360-difference; 
    else 
        turn = 'right'; 
        turn_val=360+difference; 
    end 
end 
  
% Execute the while loop when the difference in headings is greater than 1 
%   degree. 
while (abs(difference)>1) 
    % Read in the heading and display in the GUI. 
    actual=heading_nate(); 
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    set(h_act,'String',actual); 
    % Manipulate the heading so it is a number 
    act=cell2mat(actual); 
    actu=str2num(act); 
    % Find the difference and display it in the GUI. 
    difference=actu-desired; 
    diff=num2str(difference); 
    set(h_diff,'String',diff); 
    % Put the correct voltages onto each motor depending on which way the 
    %   robot should turn 
    if (strcmp(turn,'right')) 
        putdata(ao,[2.5 3.3]) 
        start(ao); 
    else 
        putdata(ao,[3.3 2.5]) 
        start(ao); 
    end 
end 
  
% Stop the robot from moving. 
putdata(ao,[2.9 2.9]); 
start(ao); 
  
%close the analog output handle. 
stop(ao); 
  
 
heading_nate.m 

function [actualhead] = heading_nate 
  
%Enter heading_nate to run this equation. 
% 
%Function Name:     heading_nate 
% 
%Parameters:        none 
% 
%Returns:           actualhead  
% 
%Description:       Connects to the compass in the serial port and reads 
%                   the NEMA string.  Returns the second value in the 
%                   string, which is the heading in degrees. 
% 
  
clear; 
  
% set handle to the serial port and set initial port conditions 
 h = serial('COM1'); 
 h.baudrate = 19200; 
 h.terminator = 'CR/LF'; 
  
% open the port 
 fopen(h); 
  
% flush the data to remove errors 
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 flushinput(h); 
  
% read in the NEMA string from the compass 
 [data,null] = fscanf(h, '%s'); 
     
% read the result of the NEMA string and return the value in the second cell 
result = strread(data,'%s',-1,'delimiter',','); 
actualhead = result(2); 
  
% closes the port 
fclose(h); 
 

runrobot.m 

function varargout = runrobot(varargin) 
% RUNROBOT M-file for runrobot.fig 
%      RUNROBOT, by itself, creates a new RUNROBOT or raises the existing 
%      singleton*. 
% 
%      H = RUNROBOT returns the handle to a new RUNROBOT or the handle to 
%      the existing singleton*. 
% 
%      RUNROBOT('CALLBACK',hObject,eventData,handles,...) calls the local 
%      function named CALLBACK in RUNROBOT.M with the given input arguments. 
% 
%      RUNROBOT('Property','Value',...) creates a new RUNROBOT or raises the 
%      existing singleton*.  Starting from the left, property value pairs are 
%      applied to the GUI before runrobot_OpeningFunction gets called.  An 
%      unrecognized property name or invalid value makes property application 
%      stop.  All inputs are passed to runrobot_OpeningFcn via varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 
  
% Edit the above text to modify the response to help runrobot 
  
% Last Modified by GUIDE v2.5 15-Dec-2006 13:05:46 
  
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @runrobot_OpeningFcn, ... 
                   'gui_OutputFcn',  @runrobot_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
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else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
  
  
% --- Executes just before runrobot is made visible. 
function runrobot_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to runrobot (see VARARGIN) 
  
% Choose default command line output for runrobot 
handles.output = hObject; 
  
% Update handles structure 
guidata(hObject, handles); 
  
% UIWAIT makes runrobot wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 
  
  
% --- Outputs from this function are returned to the command line. 
function varargout = runrobot_OutputFcn(hObject, eventdata, handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Get default command line output from handles structure 
varargout{1} = handles.output; 
  
  
% --- Executes on slider movement. 
function slider1_Callback(hObject, eventdata, handles) 
% hObject    handle to slider1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'Value') returns position of slider 
%        get(hObject,'Min') and get(hObject,'Max') to determine range of 
slider 
  
  
% --- Executes during object creation, after setting all properties. 
function slider1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to slider1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: slider controls usually have a light gray background. 
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if isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor',[.9 .9 .9]); 
end 
  
  
% --- Executes on slider movement. 
function slider2_Callback(hObject, eventdata, handles) 
% hObject    handle to slider2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'Value') returns position of slider 
%        get(hObject,'Min') and get(hObject,'Max') to determine range of 
slider 
  
  
% --- Executes during object creation, after setting all properties. 
function slider2_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to slider2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: slider controls usually have a light gray background. 
if isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor',[.9 .9 .9]); 
end 
  
  
  
function edit1_Callback(hObject, eventdata, handles) 
% hObject    handle to edit1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit1 as text 
%        str2double(get(hObject,'String')) returns contents of edit1 as a 
double 
  
  
% --- Executes during object creation, after setting all properties. 
function edit1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
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function edit2_Callback(hObject, eventdata, handles) 
% hObject    handle to edit2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit2 as text 
%        str2double(get(hObject,'String')) returns contents of edit2 as a 
double 
  
  
% --- Executes during object creation, after setting all properties. 
function edit2_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
  
% --- Executes on button press in stop. 
function stop_Callback(hObject, eventdata, handles) 
% hObject    handle to stop (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
  
  
function edit3_Callback(hObject, eventdata, handles) 
% hObject    handle to edit3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of edit3 as text 
%        str2double(get(hObject,'String')) returns contents of edit3 as a 
double 
  
  
% --- Executes during object creation, after setting all properties. 
function edit3_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
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    set(hObject,'BackgroundColor','white'); 
end 
  
  
% --- Executes on button press in turn. 
function turn_Callback(hObject, eventdata, handles) 
% hObject    handle to turn (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
  
% -------------------------------------------------------------------- 
function Untitled_1_Callback(hObject, eventdata, handles) 
% hObject    handle to Untitled_1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 

run_robot.m 

function run_robot 
%Enter run_robot to run this equation. 
% 
%Function Name:     run_robot 
% 
%Parameters:        none 
% 
%Returns:           none  
% 
%Description:       The callback function for the GUI to control the 
%                   movement of the robot. Connects to the D/A card, then 
%                   connects to the objects in the GUI, and outputs the 
%                   correct voltages based on the level of the slide bars. 
% 
  
% Connect to the D/A card, and set parameters 
ao = analogoutput('mcc',0); 
chans = addchannel(ao,0:1); 
set(ao,'SampleRate',500); 
  
% Set the handles for all the objects in the GUI the function will modify 
%   or use. 
h_left=findobj('Tag','slider1'); 
h_right=findobj('Tag','slider2'); 
h_text1=findobj('Tag','edit1'); 
h_text2=findobj('Tag','edit2'); 
  
% Read the value of the left and right slide bars, representing the voltage 
%   to the left and right motors. 
left_val=get(h_left,'Value'); 
right_val=get(h_right,'Value'); 
  
% Add 1.9 volts to the values to output the correct voltage to the motor to 
%   run within the correct speed constraints 
left_val = left_val + 1.9; 
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right_val = right_val + 1.9; 
  
% Output the voltages to the motors 
putdata(ao,[left_val right_val ]) 
start(ao); 
  
% Display the voltages, level for each slidebar, in the GUI 
set(h_text1,'String',left_val); 
set(h_text2,'String',right_val); 
  
stop(ao); 
 

stop_movement.m 

function stop_movement 
%Enter stop_movement to run this equation. 
% 
%Function Name:     stop_movement 
% 
%Parameters:        none 
% 
%Returns:           none  
% 
%Description:       Connects to the robot via the D/A converter and puts 
%                   voltages equating to stop values on each motor. 
% 
  
%set the handles, from the GUI, to the sliders 
h_left=findobj('Tag','slider1'); 
h_right=findobj('Tag','slider2'); 
  
%set the value that centers the sliders 
middle_val_left=1; 
middle_val_right=1; 
  
%put the value onto the sliders 
set(h_left,'Value',middle_val_left); 
set(h_right,'Value',middle_val_right); 
  
%change the text showing the value of the sliders 
h_text1=findobj('Tag','edit1'); 
h_text2=findobj('Tag','edit2'); 
  
show_left=2.9; 
show_right=2.9; 
  
set(h_text1,'String',show_left); 
set(h_text2,'String',show_right); 
  
% call the run_robot function to output the voltages to the motors. 
run_robot; 
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turn_robot.m 

function turn_robot 
%Enter heading_nate to run this equation. 
% 
%Function Name:     heading_nate 
% 
%Parameters:        none 
% 
%Returns:           actualhead  
% 
%Description:       Connects to the compass in the serial port and reads 
%                   the NEMA string.  Returns the second value in the 
%                   string, which is the heading in degrees. 
% 
  
%set the handles, from the GUI, to the sliders 
h_left=findobj('Tag','slider1'); 
h_right=findobj('Tag','slider2'); 
  
%set the value that will turn the robot 
middle_val_left=.50; 
middle_val_right=1.35; 
  
%put the value onto the sliders 
set(h_left,'Value',middle_val_left); 
set(h_right,'Value',middle_val_right); 
  
%change the text showing the value of the sliders 
h_text1=findobj('Tag','edit1'); 
h_text2=findobj('Tag','edit2'); 
  
show_left=2.3; 
show_right=3.4; 
  
set(h_text1,'String',show_left); 
set(h_text2,'String',show_right); 
  
% call the run_robot function to output the voltages to the motors. 
run_robot; 
 



Autonomous Ground Vehicle 
Test Plan 

 
Synopsis.  
Acceptance tests will be conducted in order to verify that the system meets the 
requirements specification in order to participate in the Intelligent Ground Vehicle 
Competition (IGVC). The design, the vehicle dimensions, the mechanical E-stop, and the 
wireless E-stop will be tested. 
Personnel.  
All of the tests conducted will require only one person.  
Procedure.  
The only equipment needed to conduct these tests are the vehicle itself, the remote 
controller, and a measuring tape. In order to test the mechanical and wireless E-stops for 
the vehicle, the tests must be conducted in an unobstructed environment with a distance 
of least greater than 50 ft. The preferred testing field would be on the football field since 
it’s free of obstacles and has measurements on the field. It should not take any longer 
than 15 minutes to conduct the four tests.  
Equipment Required: 
1. Vehicle-laptop, mechanical propulsion system and a power system (generated 
onboard) for it 
2. Remote controller and battery to supply power for it  
3. Measuring tape 
Initial Set-up 
1. Push the red switch button that is located on the base of vehicle toward the left back 
corner wheel. This turns the power for the motors on for the vehicle.  
2. Push the top middle button to turn the laptop on.  
3. Double click on MATLAB icon to open up the MATLAB programming language. 
4. Go to the directory of C:\MyDocuments\PECE\RobotControl\ 
5. Double click on the m-file named ForwardControl.m to open the program which 
allows the vehicle to drive forward.  
6. If user is testing the mechanical or wireless E-stop, to enable the vehicle to drive 
forward, go to the command window of MATLAB and type “run ForwardControl” then 
hit enter. 
Parameter Required Value 
N/A 
 
 
 
 
 
 
 
 
 



Test # 1 – Design 
Objective:  
Verify if vehicle’s design is ground based and is solely propelled by a mechanical 
propulsion system. 
Requirements:  
Must be a ground vehicle propelled by direct mechanical contact to the ground. The 
requirement I.D. level is 1. 
Test Overview:  
The vehicle will be examined first to see identify if the vehicle is powered by a 
mechanical propulsion system. Then the vehicle will be operated in the forward and 
backwards directions to verify if vehicle maintains constant and direct contact with the 
ground at all times. The expected result of this test is the vehicle will successfully move 
in all directions while remaining on the ground. 
Test Procedure: 
1. Ensure the vehicle is on an unobstructed field. 
2. Lay out a measuring tape for 15 ft. 
3. Ensure the vehicle is lined up in parallel with the measuring tape and placed on one 
end of the tape. 
4. Push the red switch button that is located on the base of vehicle toward the left back 
corner wheel. This turns the power for the motors on for the vehicle.  
5. Push the top middle button to turn the laptop on.  
6. Double click on MATLAB icon to open up the MATLAB programming language. 
7. Go to the directory of C:\MyDocuments\PECE\RobotControl\ 
8. Double click on the m-file named ForwardControl.m to open the program which 
allows the vehicle to drive forward.  
9. Go to the command window of MATLAB and type “run ForwardControl”. Then hit 
enter. (This enables the vehicle to drive forward.) 
10. Once the vehicle is moving forward, wait until the vehicle the end of the measuring 
tape and then type CTRL + C in the command window of MATLAB to stop the code 
from running. (This stops the vehicle from moving forward.)  
Results: 
For successful results, the expectation is that by inspection the vehicle’s propulsion 
system is composed of electromechanical parts and the vehicle remains on ground the 
entire time it is moving or remaining still. 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Test # 2 – Vehicle Dimensions 
Objective:  
Verify if vehicle’s design regarding the length, width, and height requirements are met. 
Requirements:  
1. Length – 3 ft to 7 ft inclusive.  
2. Width – 2 ft to 5 ft inclusive.  
3. Height – less than or equal to 6 ft.  
The requirement I.D. level is 2. 
Test Overview:  
The vehicle will be measured with a measuring tape to verify if vehicle dimensions meet 
the requirements. The expected result of this test is the vehicle will successfully meet the 
dimension requirements. 
Test Procedure: 
1. For length, measure one end of the base to the other end (the same side) with a 
measuring tape. Measured Length = __________  
2. For width, measure with a measuring tape the perpendicular distance across the base 
from one end of the base to the same point on the opposite side of the base.  
Measured Width = ___________ 
3. For height, measure with a measuring tape the perpendicular distance from any point 
on the base to the highest point of the vehicle. Measured Height = ____________ 
Results: 
For successful results, the expectation is that after measuring the vehicle’s dimensions 
that these values are within the bounds specified in the requirements. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Test # 3 – Mechanical E-stop 
Objective:  
Verify if vehicle’s mechanical E-stop meets design, implementation and operation 
requirements. 
Requirements:  
1. The mechanical E-stop must be a push button 
2. Button must be red. 
3. Button must be one inch diameter. 
4. Button must be located in center rear of vehicle 
5. Button must be at a height of at least 2 ft but no more than 4 ft above the ground.  
6. The implementation of this E-stop must be hardware based and not controlled through 
software.  
7. Activating the mechanical E-Stop must bring the vehicle to a complete stop.  
The requirement I.D. level is 4. 
Test Overview:  
What will occur in this test is the vehicle will be operated in the forward direction. The 
tester will keep up with vehicle at a moderate speed of no greater than 5 mph and push 
the constructed mechanical E-stop button when the vehicle has reached the end 15 ft 
straight line path. After the button has been pushed, the tester will examine if the button 
completely stopped the vehicle. The initial conditions will be that the power to the motors 
is turned on and the laptop is on with the appropriate MATLAB code running to move 
the vehicle. The expected result of this test is the mechanical E-stop will completely stop 
the vehicle by shutting off the power to the motors. 
Test Procedure: 
1. Is the mechanical E-stop a push button? ___________ 
2. Is the button red? ___________ 
3. Is the button one inch in diameter? _____________ 
4. Is the button located in center rear of vehicle? __________ 
5. Is the button at a height of at least 2 ft but no more than 4 ft above the ground? ______ 
6. Is the mechanical E-stop solely hardware based? _________ 
7. Ensure the vehicle is on an unobstructed field. 
8. Lay out a measuring tape for 15 ft. 
9. Ensure the vehicle is lined up in parallel with the measuring tape and placed on one 
end of the tape. 
10. Push the red switch button that is located on the base of vehicle toward the left back 
corner wheel. This turns the power for the motors on for the vehicle.  
11. Push the top middle button to turn the laptop on.  
12. Double click on MATLAB icon to open up the MATLAB programming language. 
13. Go to the directory of C:\MyDocuments\PECE\RobotControl\ 
14. Double click on the m-file named ForwardControl.m to open the program which 
allows the vehicle to drive forward.  
15. Go to the command window of MATLAB and type “run ForwardControl”. Then hit 
enter. (This enables the vehicle to drive forward.) 



16. Once the vehicle is moving forward, follow the vehicle and push the red circular push 
button that is located at the center rear of the vehicle 3 ft from the bottom when the 
vehicle has reached the end of the measuring tape. 
17. When activating the mechanical E-stop, does the vehicle come to a complete stop? 
______ 
Results: 
For successful results, the expectation is the mechanical E-stop button meets the 
construction requirements and when activated it completely stops the power supply for 
the motor bringing the vehicle to a complete stop. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Test # 4 – Wireless E-stop 
Objective:  
Verify if vehicle’s wireless E-stop functions at least 50 ft away. It must be solely 
hardware based and bring the vehicle to a complete stop. 
Requirements:  
1. It must be wireless. 
2. It must function at least 50 ft away.  
3. It must be hardware based and not controlled through software.  
4. It must bring the vehicle to a complete stop.  
The requirement I.D. level is 5. 
Test Overview:  
What will occur in this test is the vehicle will be operated in the forward direction 
alongside by a measuring tape set out to 60 ft. The tester will remain at the starting point 
of where the vehicle began moving forward and operate the remote control to stop the 
vehicle after it has reached a distance of at least 50 ft. After the remote control switch has 
been flipped, the tester will examine if the switch completely stopped the vehicle. The 
initial conditions will be that the power to the motors is turned on and the laptop is on 
with the appropriate MATLAB code running to move the vehicle. The expected result of 
this test is the wireless E-stop will completely stop the vehicle by shutting off the power 
to the motors. 
Test Procedure: 
1. Is remote controller used for an E-stop wireless? _________ 
2. Is the wireless E-stop solely hardware based? __________ 
3. Ensure the vehicle is on an unobstructed field. 
4. Lay out a measuring tape for 60 ft. 
5. Ensure the vehicle is lined up in parallel with the measuring tape and placed on one 
end of the tape. 
6. Push the red switch button that is located on the base of vehicle toward the left back 
corner wheel. This turns the power for the motors on for the vehicle.  
7. Push the top middle button to turn the laptop on.  
8. Double click on MATLAB icon to open up the MATLAB programming language. 
9. Go to the directory of C:\MyDocuments\PECE\RobotControl\ 
10. Double click on the m-file named ForwardControl.m to open the program which 
allows the vehicle to drive forward.  
11. Pull out the antenna on the remote controller which is located on the top-middle of 
the device. 
12. Flip the top-left switch to turn on the remote controller.  
13. Go to the command window of MATLAB and type “run ForwardControl”. Then hit 
enter. (This enables the vehicle to drive forward.) 
14. Once the vehicle is moving forward, remain at the beginning of the measuring tape 
where the vehicle started moving. 
15. When the vehicle has reached the end of measuring tape (laid out at 60 ft), flip the 
upper left corner switch, which is directly below the power switch for remote controller. 
16. When activating the wireless E-stop, does the vehicle come to a complete stop? 
______ 
Results: 



For successful results, the expectation is the remote controller (wireless E-stop) when 
activated at a distance of at least 50 ft, stops the power supply for the motor bringing the 
vehicle to a complete stop. 
 
 



Autonomous Ground Vehicle 
Design Specification 

April 20, 2007 

Purpose:   
The purpose of our project is to design and build an autonomous ground vehicle capable of 
participating in the Intelligent Ground Vehicle Competition (IGVC). In order to qualify for the 
IGVC, the vehicle must meet requirements in eight criteria: length, width, height, mechanical E-
stop, wireless E-stop, max speed, lane following, obstacle avoidance, and waypoint navigation. 

Design Solution:   
 
Constructing an autonomous ground vehicle to meet qualification requirements can be divided 
into three sections: mechanical and propulsion system (vehicle design), autonomous navigation 
system (sensors), and power systems. The mechanical and propulsion system will consist of an 
aluminium frame, 4 ATV wheels, and a tank drive system. The power system will consist of 3-
12 volt batteries, 1-9 volt battery, 2-5 volt batteries and laptop power.  Lastly, the autonomous 
navigation system will consist of a Dell laptop, a Creative webcam, SICK laser range-finder, 
Honeywell 3000 electronic compass, shaft encoders, and a Trimble DGPS system. 
 
 

 
Figure 1- Interaction between the three sections 



The electronic compass, cameras, DGPS, and laser are the sensors that aid in the autonomous 
navigation of the vehicle. 
 
Sensors 
 
For DGPS, the DGPS receiver used for determining the vehicle’s position is the Trimble 214 
DGPS. MATLAB was used to retrieve the position (longitude and latitude) and the time stamp 
from its data string. The DGPS outputs its data in the National Marine Electronics Association 
(NMEA) string.  The data type chosen for the NMEA sentence is recommended minimum 
(RMC).  
 
For the electronic compass, the Honeywell HMR3000 is being used to obtain the robot’s 
heading. This particular electronic compass provides NMEA sentences in three different formats: 
HDG, HDT, and HPR. The NMEA sentence chosen is the HPR. This data type represents 
heading, pitch and roll. Furthermore, MATLAB was used to obtain the heading from the HPR 
NMEA string to provide to the robot so that it could calculate the difference between the actual 
heading and the desired heading and make the appropriate turn to achieve that desired heading.  
 
Another sensor utilized is a digital camera. One camera will cover a 180° sweep of the robot’s 
front view. The camera will be placed on the center of the vehicle’s frame (behind the laser) 
elevated 2.17 ft above the ground to capture images of vehicle’s front view. The data retrieved 
from the camera is then filtered by the Hough transform (in MATLAB).  
 
With the laser rangefinder, the particular laser utilized is the SICK Laser LMS221. The data 
retrieved from this sensor is obtained via MATLAB. The data retrieved is a continuous real-time 
scan of the laser making a 180° sweep of the laser’s front view. This data essentially looks like 
an upper semi-circle that is uniquely deformed depending on the environment the laser is 
viewing. The factors that affect the laser’ scan are an obstacles size, distance from laser, and 
location.  
 
To gather the wheel rotational speed and direction of movement, two simple shaft encoders were 
built and programmed using MATLAB. Three magnetic sensors were placed in the side of the 
vehicle next to each of the front wheels. The permanent magnet is mounted in the sprocket of the 
wheel. All sensors were connected to digital I/O pins on the A/D converter (PC board). The three 
sensors were labeled as a distinct variable with one sensor used to monitor the distance, speed, 
and rpm by calculating the time it took the magnet to come close in contact with it. The other 
two sensors were used only for determining which direction the shaft is rotating to display if the 
vehicle was moving forwards or backwards. MATLAB code interprets the data received from the 
A/D converter and converts it into speed over ground, distance traveled and direction. The shaft 
encoder sensor assembly can be seen in figure 2. 
 



 
 

Figure 2- Shaft encoder assembly 
Vehicle Design 
 
The main consideration with regards to the vehicle was that it should be easy to install 
equipment, and have compartments for all the equipment that we need.  The first step was to get 
a rough drawing of the vehicle, to see what it might eventually look like.  After this was done, 
dimensions were added based on the IGVC requirements and what we required for size.  Once 
dimensions were added, the vehicle was built in Solidworks using 1”x1” square tubing.  The 
dimensions used were 3’x4’.  This would provide a vehicle that is within the size constraints, but 
also give ample space for equipment.  After designing this vehicle, a second was designed that 
was 2’x3’.  This vehicle also meets the requirements and gives us space for all equipment, but it 
uses less material.  Figure 3 - IGVC Vehicle Design shows the 2’x3’ vehicle frame from 
Solidworks.  



 
Figure 3 - IGVC Vehicle Design 

 
This design has several advantages for IGVC use.  On the front, there is a lip for the laser to 
mount on, with two vertical tubes in the center for the laser to be bolted to.  The compartment 
behind the laser mount is for batteries, and the charging system.  On the back of the vehicle there 
are 3 compartments on top of each other.  The lowest is for the motors, and the First Robotics 
controllers and systems.  The second is for the computer to motor and sensors interface, DGPS 
receiver, serial connection box, and other equipment that the operator does not have to access to 
get the machine running.  The top compartment is for the laptop computer and switch panel.  
Here the operator will be able to make changes as necessary and start the operation of the 
vehicle.  The compartments were designed this way to simplify equipment installation as well as 
make the building of the vehicle simpler.   



After designing the frame, the wheel mounts, and antenna mounts had to be designed.  Figure 4 
shows a completed vehicle.                                                     

    
  Figure 4 – Front View of the Robot 

 
The electronic compass had to be mounted as far from motors and shafts as possible due to the 
interference they created.  This led to a tower being designed that is secured to the frame in 
several spots but is screw mounted so it can be removed if necessary. The tower can be seen in 
the front view of the robot in figure 4.   
 
 

                                          
  Figure 5 – Side View of the Robot 



 
 The DGPS antenna is mounted on the back part of the vehicle and can be seen in figure 5.  The 
wheels are mounted so as to provide the ability to have a zero-turning radius, in a tank drive style 
system.  They can be seen in side picture of the robot in figure 5.  
The propulsion system for the vehicle is a simple one.  It is a tank dive system, with two motors 
coupled together on each side.  The two motors per side give more torque so the vehicle should 
be able to move quicker.  The system is set up so that the motors deliver power to all the wheels.  
This will minimize the turning radius of the vehicle, thus providing better navigation.  The 
motors are situated behind the back wheel so the chain runs forward to the back wheel sprocket, 
then forward to the front wheel sprocket.   
 
Power Systems 
 
Since the sensors, devices, and motors required different voltages, two power systems were 
created. The decision was made to split the power system into two was based off a couple of 
factors. First, the electrical or mechanical disturbance from the power grid connected to the 
motors could interfere with the continuous operation of the sensors. For example, the start of the 
motors will cause a voltage drop which could introduce an anomaly to the system. We also 
anticipated an implementation of the emergency stops and predicted that a simultaneous cutoff of 
power for the motors and sensors would result in a lengthy reset of the laptop and all of the 
sensors. Two separate power grids eliminate this problem and allow us to stop the robot without 
turning of the sensors. There are no concerns with the power budget since all of the distinct 
batteries are adequately provided by the electrical engineering and mechanical engineering 
departments. 
The power system for the sensors uses two 12 volt batteries and three 9 volt batteries. The laser 
rangefinder requires 24 volts to operate while the DGPS used 12 volts to function. In addition, 
one 9 volt battery is used for each e-compass and the wireless camera while the web cameras are 
powered by the laptop power. The second power system is for the drive train and control of the 
robot. This system requires a 12 volt battery to power two motors and a motor controller.  Figure 
6 shows the power supply we will build for the robot. 
 

 
Figure 6 - Power System for the Robot 
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The power supply of the vehicle, we eventually consist of a “black box” type unit with a modular 
wiring system. The wiring system will ultimately lead to a single weather-proof outlet on the 
outside of the robot. The purpose of this is to provide the capability of recharging the batteries 
necessary for powering the laptop, different sensors, and motors of the vehicle.  
 
Wireless E-stop 
 
The key component in the emergency e-stop system is an electric relay that cuts the power for 
the motors. When the motors are of the resistance of the gears stops the movement of the vehicle. 
The electric relay is controlled by an electrical circuitry (figure 7) that consists of the two 
transistors and an operational amplifier. The 12 volt sensor battery provides power for the e-stop 
circuitry.   The circuitry receives a logic signal from the Futaba analog servo circuitry (0.04-5V). 
A wireless link is established using the Futaba remote control unit and the Futaba FM receiver 
that work for the distances greater than 50 feet and thus meet a design requirement. The receiver 
is powered by 5 volt rechargeable battery. The remote control unit has an internal rechargeable 
12 volt battery. 
 

 
Figure 7 - Emergency stop (wireless and manual) 

 
 
Mechanical E-stop  
 



A manual emergency stop is simply a pushbutton which is pressed grounds a negative terminal 
of the electric relay bypassing the electric circuitry of the wireless emergency stop. If the manual 
stop is energized the power of the motors can not be restored remotely. The manual e-stop switch 
can be seen in the lower right corner of figure 7. 
 
Control System 
 
The last component of the design solution is the control system. In this component, the 
development and implementation of a single PD controller for steering and distance control of 
the autonomous ground vehicle was created in order to enable the vehicle to travel from one 
location to another. The controller will control all of the robot’s movements and speed. In 
addition, it will work in unison with the data retrieved from the sensors and LT Everette’s code 
to safely and accurately navigate on a prescribed path or to targeted waypoints. The autonomous 
control system will be comprised of four distinct state-space controllers. The results should 
verify that implementing this PD controller will provide acceptable lateral and longitudinal 
control of the autonomous ground vehicle as well as excel in tracking accuracy and steady-state 
error.

 
Figure 8 - PD controller devised for the robot. 

 
Figure 8 represents the PD controller devised for the robot. The coefficients have not been 
determined yet and are pending since the vehicle has not been completely assembled. When the 
vehicle is completely built, the system I.D. can be calculated and thus the Kp and Kd values can 
be found which depend on the plant Gp (also known as the system I.D.). The Kp value is 
proportional to the error while the Kd value monitors the rate of change. The controller designed 
for the vehicle is simplified since it is only concerned with turning to a specified angle and 
driving a certain distance. The controller was designed this way since the input that would be 
provided to the vehicle would be the desired heading and range to a particular location. Lastly, 
the R(s) represents the voltage input for both left and right motors necessary for the vehicle to 
reach the desired location. 



 
 

Figure 9 - Vehicle mechanical control scheme 
 

The figure 9 presents a better illustration of how the entire vehicle control system works and the 
integration of the sensors. The system I.D. is modeled through the speed and heading transfer 
functions. Since the vehicle is not built yet, the equations can not be presented since they are not 
accurate. Basically, what should be drawn from this figure is the user enters the desired position, 
the software (MATLAB code) controls the vehicle’s movements (i.e. voltage to the motors) and 
acquires data continuously from the sensors and feeds the data back to the computer. The 
controller, which is essentially the big box encompassing the speed and heading transfer 
functions, makes sure the vehicle reaches the desired position by comparing it with the actual 
position and makes suitable corrections when necessary to ensure the vehicle is facing the 
precise heading and has traveled the correct distance. 

Design Decisions: 
Vehicle Design  
During the building of the vehicle we made several decisions regarding the vehicle.  We decided 
to build the 2’x3’ vehicle because it is more cost efficient to our project.  A larger vehicle 
provides more room for equipment and a wider base for more stability, but comes at a higher 
cost and makes navigation in tight places more difficult.  A smaller vehicle is cheaper, navigates 
better, and still has enough room for the equipment needed.  The smaller vehicle is the best 
choice for this project.  
The second decision, after deciding on the vehicle size, was the materials to use.  There were 
several choices for what could be used. The first material was the aluminum used on the first 
robotics vehicle, which has predrilled holes for easily putting pieces together.  It costs $39.95 per 
6 foot segment. The second was aluminum bars, which are very strong and can support large 
amounts of weight but cost $56.72 per 6 feet. The third was aluminum tubing, which is strong, 



but is lighter weight because it is hollow.  Aluminum tubing costs $20.78 per 6 feet. We decided 
to use the aluminum tubing for several reasons.  The first is that it provides the strength needed 
for our vehicle.  Secondly, it is not hard to drill through aluminum.  Finally, it was much cheaper 
than the solid aluminum bars, or the predrilled first robotics aluminum.     
The third decision we had to make was the wheels to use.  The competition requires a wheel that 
is capable to driving on pavement or grass.  This means we need a wheel with tread and one that 
is sturdy.  We decided to use the wheel shown in Figure 10 - Wheel used on vehicle because it is 
a large wheel, giving clearance for the bottom of the vehicle, it has tread, which will help with 
driving off road, and it has a sprocket mounted that is the correct tooth size, which will help with 
connecting the wheels to the power system.  The wheels have a shaft size of ¾”, which is larger 
than what was used on the first vehicle we tested on.  Having a wheel with a sprocket mounted 
eliminated the need for the purchase of a sprocket with a shaft size of ¾”.   

 
Figure 10 - Wheel used on vehicle 

 
The final decision, after all parts were decided upon, was how to build the vehicle.  The 
strongest, most permanent solution would be to weld all the parts together.  Another solution is 
to drill holes, and mount all the pieces together using bolts and brackets.  We decided to use bolts 
and brackets to put the vehicle together because welding requires practice and knowledge, which 
nobody in the group has.  By bolting the pieces together, we will be able to build the vehicle 
ourselves.   
The decisions on the propulsion system were driven by what parts were available at the 
Academy.  We did not want to purchase parts for the propulsion system since we had access to a 
wide variety of equipment from the FIRST Robotics competition teams.  The motors and the 
coupling were used on the 2006 FIRST Robot.  The rest of the propulsion system was taken from 
the 2003 vehicle that was originally being used.   
 
Wireless and Mechanical E-stop  
 
The Futaba transceiver and the receiver were chosen for the wireless link of the remote e-stop 
because of the economic considerations. The academy already possessed this equipment.  
The control circuitry for the electric relay was necessary because a sufficient current supply was 
necessary in order to power the electromagnet of the relay. 
 
Sensors 
 
The team decided to build shaft encoders using three magnetic sensors, magnet and a MATLAB 
program because it was a cheapest option available. It was also faster to build the shaft encoder 



rather than ordering them. While there are numerous shaft encoders both coupled with motors 
and separate ones that are available on the market they tend to be expensive and in many cases 
incompatible with our vehicle design because of the motors that were already available and the 
wheel that are mounted on the stationary shaft. The shaft encoders were placed on the two front 
wheels of the vehicle since the vehicle is operating a left and a right motor to emulate a tank 
drive system. The shaft encoders are vital because they provide the distance traveled by the 
vehicle which is one of the parameters required by the PD controller in order to travel to a 
prescribed location. This sensor provides constant feedback as to whether the vehicle has 
achieved that prescribed distance. 
 
The Trimble 214 DGPS receiver is being used since this was provided for us from the beginning 
of the project. MATLAB was the chosen as programming language because not only is it a 
powerful and relatively easy-to-use computational tool, but it interacts very well with other 
sensors and devices. The RMC sentence was chosen because it provides the essential position, 
velocity and time data critical for autonomous ground vehicle to accurately navigate. In addition, 
the DGPS was chosen because it achieves an accurate position varying between 0.5 and 1 meter.  
Lastly, MATLAB will be used for integrating all other sensors and devices because it will be less 
confusing and difficult for the user if all programs are written in one common language. This 
also creates more ease for the user to identify any possible errors in the code. 
 
The Honeywell HMR3000 is used since this sensor was provided for us from the beginning of 
the project. Even though, the only concerned information from HPR NMEA sentence is the 
heading, pitch and roll might be used later for determining if the robot is approaching a declining 
or inclining hill and how much speed to apply to the motors to ensure the robot can make way 
while maintaining the 5 mph limit.  
 
A digital camera is used since the pictures it takes are digitized which makes possible for digital 
image processing techniques. Initially, three cameras were intended to be used to get an accurate 
180° sweep of the robot’s front view. However, due to the lack of processing capabilities of the 
digital cameras presented to the team, the digital cameras were not able to take pictures 
simultaneously and thus fail to work afterwards. So the plan reverted to just using one digital 
camera. The purpose of using the digital camera was to capture several images in order to detect 
the yellow or white lanes which the autonomous ground vehicle must follow. The Hough 
transform was chosen because it identifies lines in an image. The Hough transform applies an 
edge detection operator to a raw image (picture) and determines which lines fit most closely to 
the data in the image. To serve as an additional tool, the team decided to incorporate a wireless 
camera on the robot which displays on a remote laptop what the robot is viewing. 
 
The SICK Laser LMS221 was the particular laser rangefinder chosen since this sensor was 
purchased before the team started working on the project. The purpose of the laser rangefinder to 
detect obstacles within 8 meters and safely navigate around those obstacles that may be too close 
or are along the path to a targeted destination (waypoint).  
 
 

Requirements:   
 



• The vehicle’s length is 3 ft which is between 3 and 7 ft. 
• The vehicle’s width is 2.17 ft which is between 2 and 5 ft. 
• The vehicle’s height is 5.17 ft which is less than 6 ft. 
• The vehicle’s design meets requirement criteria since it has 4 ATV wheels and a 

mechanical propulsion system which enables the vehicle to maintain constant contact 
with the ground. 

•  The vehicle’s propulsion system is independent since its power is generated onboard. 
• The mechanical E-stop is a push button. 
• The mechanical E-stop button is red in color and is 1 inch in diameter. 
• The mechanical E-stop buttons location is in the center rear of the vehicle. 
• The mechanical E-stop is located 2.5 ft high (above the ground) which is between 2 ft 

and 4 ft. 
• The mechanical E-stop is solely hardware based and completely stops the vehicle when 

activated. 
• The wireless E-stop is a remote controller that is solely hardware based and completely 

stops the vehicle when activated. 
• The wireless E-stop functions at distances of 50 ft away and greater from the vehicle. 
• The vehicle is weather proof since the design of the vehicle is constructed with Plexiglas 

all around the vehicle and sealant for any small opening in the frame to prevent any rain 
from getting into the vehicle’s frame, particularly the compartments which house any 
electrical and mechanical components such as the laptops, sensors, circuitry, and the 
motors. 

• The vehicle’s design has a compartment built in it with the dimensions 26” x 15” x 15” 
which is able carry a payload of 2 lbs with the dimensions of 18’’x 8’’x 8’’.  

• All other requirements specifications are still pending. 
 


