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ABSTRACT 
The Coast Guard needs its new VHF equipment to meet 
a certain standard of speech clarity.  The subjective 
industry standard called Delivered Audio Quality 
(DAQ) was chosen in the requirement specification to 
establish what is acceptable in the new equipment and 
what is not.  The new radios, provided by General 
Dynamics, must deliver speech with a DAQ of 3.4 or 
greater in order to satisfy our requirements, and my 
project consists of verifying that it meets this 
specification. 

I decided to equate the subjective DAQ standard to an 
objective one called SINAD.  To that end, I recorded 
perfect speech files, made noisy versions, and played 
the noisy versions for audiences to give me DAQ 
values while calculating SINAD on the same files.  This 
yielded a relationship between the two that I hoped 
would map a SINAD to a DAQ, eliminating the 
subjective nature of testing the specification.  However, 
it is discovered that the medium of testing has a large 
impact on the relationship, and that any relationship 
that I might have realized would have been specific to 
the hardware system used in the communication.  

INTRODUCTION 
The U.S. Coast Guard has awarded General Dynamics 
Corporation a 19-year, $611 million contract to replace 
the Coast Guard's outdated Very High Frequency 
(VHF) radio equipment as part of a project called 
“Rescue 21.”  Rescue 21's goal is two-fold: improve the 
Delivered Audio Quality (DAQ) of radio transmissions 
to the Coast Guard, and pinpoint a direction (bearing) 
that callers are calling from.  The project's requirement 
specification document uses two technical terms to 
describe their requirements for these goals: Delivered 
Audio Quality (DAQ) and Direction-Finding (DF).  

Direction finding is the focus of 1/c Jayme Dubinsky's 
2004-2005 senior design project, and more information 
on DF can be found in her work.  My project's focus is 
measuring the DAQ of General Dynamics' VHF 
communications equipment. 

DAQ is a subjective standard, published by the 
Telecommunications Industry Association (TIA)1, of 
speech quality rated on a scale of one to five, with one 
being unusable and five being easily understandable.  
Being a subjective standard implies that there is no one 
true correct DAQ for a given sound file.  Five people 
that listen to the same sound file could evaluate the 
DAQ to be five different values, and no one would 
necessarily be more correct than the other. 

The Rescue 21 staff at Headquarters has asked the 
Coast Guard Academy to develop a testing 
methodology to verify the DAQ of General Dynamics' 
VHF Communications equipment.  The requirements 
specification states that the DAQ of received radio calls 
must be heard with a DAQ of at least 3.4, but the DAQ 
standard's subjective nature makes it hard to verify that 
General Dynamics has actually complied with this 
requirement.  Thus, the project members have decided 
to measure DAQ by equating it to an objective 
standard, also published by the TIA1, called SINAD. 

The TIA standard for SINAD states that it stands for 
Signal-to-Noise Ratio, but it is not simply the ratio 
between signal and noise.  The actual calculation is 
covered in more detail later.  For now, simply realize is 
that SINAD is objective.  In other words, given a 
method to undisputedly calculate the portion of a signal 
that is "signal" and the portion that is "noise", 
calculating SINAD becomes trivial, and there is only 
one exact answer.  The question now becomes how to 
distinguish the signal from the noise, which is not hard 
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if the system is designed well.  The details of my 
algorithm are beyond the scope of the Introduction, but 
the end result is a correct SINAD value, which is not 
contestable like DAQ is. 

TIA publishes both SINAD and DAQ in the same 
standard, and actually proposes a relationship between 
the two that maps DAQ values to ranges of SINAD 
values1.  However, I did not blindly use their 
relationship - I verified it myself so there would be no 
question of its validity.  The method I used to verify 
this relationship is quite elaborate, so the explanation is 
left for the System Design section. 

Work has been done during 2002-2004 on this project 
by 1/c Brian Warner2 and 1/c Jen Jojola3.  A vast 
majority of this previous work has been built on the 
assumption that the signal and noise cannot be easily 
separated from a signal.  In Fall 2004, we started 
operating under the assumption that I can transmit a 
pre-recorded noiseless file, and compare it to the 
received version to separate the signal from the noise.  
The project's goal is still to assess General Dynamics' 
VHF communications equipment, but this is a 
completely new approach to the problem, so much of 
the past work is not applicable. 

OBJECTIVE 
The overall goal of the project was to assess the DAQ 
of General Dynamics’ VHF equipment for the Coast 
Guard’s Rescue 21 project (G-AND).  The project’s 
success was dependent on my accurate assessment of 
whether or not the equipment could produce a radio call 
from a 1-watt radio located 20 nautical miles away and 
six feet above the ocean surface with a DAQ of at least 
3.4.  I developed a relationship between SINAD 
(objective) and DAQ (subjective) to make the testing 
simpler.  My goal was to establish this relationship by 
February 14, 2005, after which I would conduct field 
testing on General Dynamics’ radios and submit an 
analysis. 

SYSTEM DESIGN 
The ultimate goal is to assess the DAQ of General 
Dynamics’ VHF equipment.  As previously discussed, 
DAQ is a subjective standard.  One possible way to 
measure DAQ would be to record a received call from 
one of General Dynamics’ VHF radios and play it for a 
committee of human testers, who would come to a 
consensus on the DAQ.  In fact, this is General 
Dynamics’ proposed method to measure the DAQ of 
their radios.  Unfortunately, this method makes DAQ 
measurements time-consuming and expensive.  Finding 

neutral subjects would also be a challenge, especially if 
General Dynamics is paying their salary. 

I propose a different method altogether.  To remove the 
subjectivity from the measurement, I have to come up 
with a relationship between SINAD and DAQ.  This 
was projected to be my first task, but it actually wound 
up taking up all of my time.  As mentioned before, the 
TIA includes such a relationship in the DAQ and 
SINAD standard1.  Table 1 shows the TIA standard for 
DAQ, and how the TIA asserts DAQ values map to 
SINAD values. 

Table 1 - DAQ standard with 
TIA’s DAQ-SINAD relationship 

DAQ Subjective Performance 
Description 

SINAD 
equivalent 

1 Unusable, Speech present but 
unreadable <8 dB 

2 
Understandable with considerable 
effort. Frequent repetition due to 

noise/distortion 

12 +/- 4 
dB 

3 
Speech understandable with slight 

effort. Occasional repetition 
required due to noise/distortion 

17 +/- 5 
dB 

3.4 
Speech understandable with 

repetition only rarely required.  
Some noise/distortion 

20 +/- 5 
dB 

4 Speech easily understood. 
Occasional noise/distortion 

25 +/- 5 
dB 

4.5 Speech easily understood. 
Infrequent noise/distortion 

30 +/- 5 
dB 

5 Speech easily understood. >33 dB 
 
Oddly enough, TIA includes a footnote that warns not 
to use SINAD in this capacity.  Thus, I did not want to 
use this relationship without first verifying it.  Equating 
a subjective speech quality standard to an objective 
sound quality standard is no easy task, because there are 
subjective elements inherent in speech that are difficult 
to quantize into objective values.  The way to mitigate 
such error is to calibrate the relationship using large 
sample sizes.  Specifically, large groups of people to 
rate sound files are necessary, as well as a large group 
of sound samples.  These were both factors that I 
incorporated into my approach.  Once this SINAD-
DAQ relationship was established, I could simply take 
received calls from General Dynamics’ VHF radios, 
compare them to the noiseless versions to calculate the 
SINAD, and thus attain the DAQ. 

The first consideration was how we envisioned the 
VHF airwaves.  Figure 1 shows a block diagram that 
illustrates what we thought would happen to a VHF 
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transmission.  The transmitted benchmark is amplified 
or attenuated along the path by antennas, amplifiers, or 
any number of things, and noise is added.  The gain 
value (A) and noise combine to yield the received noisy 
file.  We thought that it was logical to assume that A 
was frequency independent – in other words, any 
amplifying or attenuating effects on the transmitted 
signal would affect all frequencies the same.  We would 
find in the end that this was not the case, but at the time 
of our design, we felt it was a safe assumption. 

 

+
Transmitted 
Benchmark 

File
A

Noise

Received 
Noisy File

 
Figure 1: My prediction of the effect of VHF airwaves 

To facilitate making noisy files and measure SINADs, I 
created two m-files in MATLAB®: SINAD.m and 
noisify.m.  The SINAD m-file is a script that 
takes a noiseless file and a noisy version of that file, 
and computes an exact SINAD value for the noisy file.  
The code for SINAD.m is included as Appendix A.  
Noisify.m is a function makes a sound file noisy, 
with certain parameters.  Once a wave file is read into 
MATLAB®, noisify() can be used to add noise 
scaled by one of the parameters and a time offset.  I 
originally coded noisify() to add uniformly 
distributed noise, and then changed it to Gaussian noise 
at the recommendation of one of my advisors.  The 
noise was filtered to a bandwidth of 8 kHz to reflect 
what we thought was the typical bandwidth of an audio 
signal.  Again, this turned out to be a poor 
representation. 

Once these scripts were completed, I recorded a set of 
“benchmark” audio files, which were recorded with 
high quality equipment, in a quiet environment to have 
minimal noise, and with a variety of voices to try to 
capture as much subjectivity in the experiments as 
possible.  I then corrupted these files using noisify(), 
and saved the noisy versions to separate wave files.  A 
noisy sound file could be played to a test audience to 
measure DAQ.  Used in tandem with its benchmark 
version, I could also use the noisy sound file to 
calculate an exact SINAD.  X number of benchmarks 
would produce X data points to use in mapping SINAD 
to DAQ.  This was the plan for establishing the 
relationship. 

RESULTS 
Initial Results 

I played the noisy sound files to a group of 24 test 
listeners, who marked on a DAQ scale what they 
thought the DAQ was.  Averaging the results for each 
file gave me an estimate of the DAQ for each noisy file.  
I then used my SINAD script to calculate the SINAD 
values for all of the noisy sound files by using the 
benchmarks.  This process yielded, for each benchmark 
and noisy pair, a SINAD and a DAQ.  I plotted the 
results, shown in Figure 1 below.  Since I had 16 pairs 
of noisy files and benchmark, there are 16 data points 
on the chart.  I added horizontal error bars to my data 
points to indicate 90% confidence intervals, under the 
assumption that the test audience’s DAQ values were 
normally distributed (since σ was unknown, the 
intervals are t-distribution based).  I also added a 
hyperbolic fit to the data.  Figure 2 also shows the TIA 
relationship on the same chart, with vertical error bars 
to represent their SINAD uncertainties listed in Table 1. 

SINAD vs. Subjective DAQ values
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Figure 2 - My initial results with 90% confidence 
intervals, plotted with TIA’s relationship from Table 1 

These initial results clearly did not support TIA’s 
relationship.  For a known SINAD value, TIA’s 
relationship suggested a much lower DAQ value than 
my results indicated.  In other words, my test subjects 
were hearing the speech better than TIA asserted they 
would. 

Furthermore, we are most concerned with DAQ values 
around 3.4.  If General Dynamics’ radios are supplying 
very poor audio, the DAQs will be very low and we 
will know they did not meet the requirement.  
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Similarly, if the speech is nearly perfect, the DAQs will 
be high, and we will know that they did fulfill the 
requirement.   Thus, the area around DAQ=3.4 has the 
most potential for dispute, and should therefore be the 
area with the most accuracy in the SINAD-DAQ 
relationship.  The fit in figure 2 does not even touch any 
of the 90% confidence intervals in the area around 
DAQ=3.4 – this was a serious problem. 

These were initial results, so we did not expect them to 
be perfect, but they were so far off that we had to take a 
step back and analyze our approach.  We decided that 
there were several things we could do to improve 
results: 

• Increase the number of people recording 
DAQ values (test audience size) 

• Increase the number of files 
• Include more files with mid-range DAQ 

values 
• Research VHF noise and add “smarter” 

noise to the files to better emulate VHF 
transmissions 

Second set of results 

We focused on the top three improvements first.  I 
expanded my benchmark library by 14 audio files to 
include 30.  When I corrupted the 14 new files, I tried 
to focus them in the 3 - 4 DAQ range to help fill in the 
gap present in the initial results.  Finally, I played all 30 
files for a group of 45 people instead of 24.  The results 
from the improvements are shown in Figure 3. 

SINAD vs. Subjective DAQ values

0

5

10

15

20

25

30

35

40

45

0 1 2 3 4 5 6

Subjective DAQ Values

SI
N

A
D

 
Figure 3 - My second group of data, plotted with TIA’s 

relationship from Table 1 

The new data looks less hyperbolic, and the new files 
filled in the 3 - 4 DAQ range nicely, but my results still 

did not reflect TIA’s results.  At this point, we decided 
to study VHF transmission noise more closely. 

The system for the VHF Noise study 

The first step in studying VHF noise is acquiring the 
noise.  We decided to use two marine radios: one to 
transmit a benchmark, and another to receive the 
benchmark and record it.  After about a week of trying 
to use existing equipment to no avail, I decided to 
invest in some new radios.  Standard Horizon was the 
manufacturer of the model we eventually decided on: 
the HX371.  We chose this model for several reasons: 

• It had variable transmission power (1 Watt, 2.5 
Watts, 5 Watts), which would hopefully enable 
us to get multiple noise levels while 
transmitting from the same location. 

• It had a output that doubled as a microphone 
and speaker 

• It came with a “clone cable”, which used the 
microphone/speaker jack to connect to another 
radio for the purpose of moving saved settings 
and memory to a new radio.  We did not 
intend on using it for this feature, but thought 
that it might serve some purpose so we wanted 
the capability. 

• The antenna was detachable, allowing us to 
attach the receiving radio to a roof antenna 

• The radio unit is handheld, making it easy to 
create a portable laptop/handheld transmitting 
unit 

A picture of the unit is shown in Figure 4. 

 
Figure 4 - Standard Horizon HX-370 radio 

One option with the HX370 was to buy a 
speaker/microphone, which allowed a user to clip the 
radio to a belt and use the “speaker-mic” to 
communicate.  We also purchased three of these.  I 
modified one speaker-mic to be the transmitter, and the 
other a receiver.  For the transmitter, I unsoldered the 
connections to the physical microphone inside the 
speaker-mic, and soldered them to an RCA cord.  The 
RCA cord could then be plugged into a laptop to 
transmit recorded benchmark files. We kept the push-
to-talk button in tact to allow easy keying of the unit 
when it came time to transmit.  Figure 5 shows a close-
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up view of the modifications we made to the 
transmitting speaker-mic. 

 
Figure 5 - Transmitting speaker-mic 

For the receiver, we unsoldered the connections to the 
physical speaker, and soldered them to another RCA 
cord.  The RCA cord plugged into the line-in jack of a 
computer sound card to record the received benchmark.  
Figure 6 shows a close-up view of the modifications we 
made to the receiving speaker-mic. 

 
Figure 6 - Receiving speaker-mic 

At this point, we had a working system to study VHF 
noise.  The transmitting unit consisted of the 
transmitting speaker-mic plugged into a HX371 radio, 
with the added RCA cord plugged into the speaker jack 
of a laptop.  The receiving unit consisted of the 
receiving speaker-mic plugged into the other HX371 
radio, with the added RCA cord plugged into the line-in 
jack on a desktop’s sound card.  This system is 
illustrated in Figure 7. 

 

Figure 7 - System used to study VHF noise 

The actual study of VHF noise 

The VHF noise study was not as easy as I had hoped.  I 
envisioned transmitting a benchmark, recording its 
received version, and simply subtracting the benchmark 
from the received version to get the noise.  Doing this 
repeatedly, I hoped, would yield a noise distribution 
function which I could implement into noisify() 
to replace the apparently inaccurate Gaussian noise.  
Things are not always what they seem, and so it turned 
out that there was much more going on between a VHF 
transmission and the reception of that transmission than 
a gain and some additive noise. 

My SINAD.m file used equation (1) to estimate the 
value of A (see Appendix A).  This equation did a poor 
job for very noisy signals. 

 

BenchmarkBenchmark
ReceivedBenchmarkA T

T

=  (1) 

 
In fact, it seemed as though whenever voice was in a 
transmitted file, the A-value would be so far off that I 
would wind up with negative SINAD values; but 
SINAD values cannot be less than 0dB. 

Instead of using benchmark speech files, I decided to 
transmit a pure tone sine wave.  The results with the 
pure tone were much better.  The A-value was 
estimated flawlessly by the algorithm.  Figure 8 shows 
the results.  The top plot is the sine wave that was 
transmitted.  The middle plot is the received sine wave.  
The bottom plot is the bottom plot subtracted from the 
top plot, yielding noise. 
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Figure 8 – Time domain results for the 100kHz sine 

wave experiment 

Suppose that the A-value was estimated incorrectly.  If 
the received wave and the original wave were not on 
the same vertical scale, the noise would still have a 100 
kHz sine wave in it, and this would show up in the 
autocorrelation sequence as repeating spikes every 10-5 
seconds.  A plot of the autocorrelation sequence 
(generated using the xcorr() function in 
MATLAB®) shows that this is not the case in Figure 9.  
There is only one spike, corresponding to no shift.  A 
look at the power spectral density (using pwelch()) 
of the noise in Figure 10 shows that some 100 kHz 
component actually did slip through, and that the 3dB 
bandwidth of the noise is about 3 kHz, not 8 kHz like 
we originally thought.   

 
Figure 9 – Autocorrelation sequence of the VHF noise 

taken from the sine wave 

 

 
Figure 10 – Power spectral density of the VHF noise 

from the pure tone experiment. 

We also found that the noise is very close to a normal 
distribution.  Using the histfit() and 
normplot() commands in MATLAB®, we 
compared the noise to normal data.  Figure 10 shows 
the noise plotted on a histogram with a normal 
distribution overlay, and figure 11 shows a plot that 
measures how normal a data is.  In figure 11, normal 
data would be completely along the dotted line down 
the middle, and any data that varies from that line is not 
normal.  Figure 10’s normal density overlay shows that 
the data is almost completely normal, and figure 11 
confirms this.   

 
Figure 10: Histogram of the VHF noise with a normal 

density function overlay 
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Figure 11: normplot() of the data 

Figures 10 and 11 don’t necessarily show that VHF 
channel noise is normal.  There was more going on here 
than VHF noise alone.  Internal hardware in the radios 
was affecting the signal also.  One option was to cater 
our noise to reflect the system we were using – the 
desktop, laptop, radios, etc.  However, since the type of 
noise added has such an effect on results, this would 
make our SINAD-DAQ relationship specific to the 
particular hardware we were using whenever we took 
data.  Since the specification for Rescue 21 doesn’t 
narrow down any one type of radio used on a civilian’s 
boat, a relationship dependent on hardware would be 
mostly useless.  This realization was a serious obstacle 
for the project. 

The other serious obstacle was the discovery that the A-
value was in reality a function of frequency.  After the 
pure tone experiment, I tested the system with a 
periodic chirp.  This let me look at the effect of the 
system on all frequencies.  Figure 12 shows the results 
of the test. 

 
Figure 12: Time domain results of the periodic chirp 

experiment 

As you can see, the periodic chirp’s higher frequencies 
are heavily attenuated, while the lower frequencies are 
left alone.  This shows that the system has a low-pass 
filter for a frequency response, due to internal hardware 
limitations inside the radios like amplifiers.  The cutoff 
frequency for the magnitude response would thus 
depend on the hardware used.  The only fair way to 
handle this consideration would be to filter both the 
benchmarks and the added noise using a filter that looks 
like this frequency response.  Once again, we would 
have to accommodate the specifics of our system’s 
hardware, so the relationship is even more restricted in 
its application. 

At this point in the project, I ran out of time to push 
further.  However, it was a good stopping point.  From 
the results, it seems that a universal DAQ-SINAD 
relationship is nearly nonexistent.  It would also be 
difficult to prove that ones exists for just the VHF 
airwaves.  My results indicate that the hardware chosen 
for the experiments has a large impact on the noise and 
gain.  Since the noise and gain have a large impact on 
any such DAQ-SINAD relationship, this suggests that 
there may only exist DAQ-SINAD relationships for 
individual systems of airwaves and hardware.  In other 
words, any relationship that I might have pulled from 
this data would be specific to my two HX-370 radios, 
the two speaker-mics, the laptop and desktop sound 
cards, and channel 71 VHF.  Needless to say, this is 
very limiting.  The Rescue 21 specification does not 
allow us to pinpoint exactly what hardware will be used 
to transmit calls to the General Dynamics radios, so the 
system is undefined.  If my analysis in this paragraph is 
correct, then perhaps no DAQ-SINAD relationship can 
be proven accurate for the purpose of Rescue 21 DAQ 
verification. 

CONCLUSIONS 
A DAQ-SINAD relationship is going to be harder to 
develop than originally conceived.  We found that the 
noise we were adding to the benchmarks was too high a 
bandwidth for VHF communications, and also that the 
magnitude response in our system was a function of 
frequency.  The noise bandwidth issue was a simple 
setback that can be avoided by simply altering a value 
in my noisify() function.  The magnitude response 
can be accounted for by filtering both the benchmarks 
and noisy versions with a filter similar to the magnitude 
response.  However, both of these steps account for 
specific properties of the system I was using to develop 
this relationship – the radios, the computers, the VHF 
channels.  This suggests that any DAQ-SINAD 
relationship I could glean would be non-transferable to 
other systems, including the Rescue 21 system.  
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Perhaps there is an inherent flaw in trying to correlate 
an objective standard to a subjective one. 

The next step in this project is to decide whether this is 
a valid approach.  I think my research suggests that it is 
not, but many more avenues remain to be investigated.  
For example, nothing I did incorporated the use of 
phonemes, which are individual sounds that make up 
language.  Phonemes are commonly used in speech 
analysis and speech synthesis to bridge the gap between 
objective computer logic and the subjective human ear. 
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%   M-file name: sinad.m 

%   Author: 1/c Tim Orr, US Coast Guard Academy 
%   Date:   25 October 04 
%   Brief overview: takes two wave files, one distorted and one not, and 
%       calculates the DAQ of the distorted one with the non-distorted one as 
%       a reference. 
% 
%   Inputs: Since this is a script, not a function, there are no inputs in the 
%           function sense.  However, there are inputs that the user specifies: 
%           - two names of wave files: one is the "benchmark signal", which is 
%             undistorted, and the other is the received signal, which is 
%             probably distorted somehow. 
%   Output: - the offset, or the sample number in the received signal where the 
%             benchmark signal starts, as identified by this algorithm.  An 
%             offset of zero means that there is no added noise at the beginning 
%             of the received signal.  The variable is called Offset. 
%           - the noise signal that this algorithm identifies as being imbedded 
%             in the signal. 
%           - the SINAD of the noisy file as compared to the benchmark 
% 
%   Description: this script compares a benchmark signal with its received 
%       version.  Using xcorr(), it identifies any time sample offset.  It then 
%       calculates any magnitude gain from benchmark to noise.  Then, it 
%       identifies noise by subtracting the original signal.  Finally, it 
%       calculates the SINAD of the received signal. 
 
 
 
% notes to myself: 
%       make sure you have the whole known signal in your received signal 
%       i don't need to worry about row/column vectors since wavread always 
%          reads into column vectors. 
 
 
 
%--------------------------% 
%                          % 
%       User inputs:       % 
%                          % 
%--------------------------% 
 
disp('This script takes a benchmark signal and a noisy version of the benchmark'); 
disp('and calculates the SINAD of the noisy signal.  The user must supply the'); 
disp('filenames of the benchmark and noisy sound files'); 
disp(' '); 
BenchmarkFilename = input('Benchmark signal filename: ', 's') ; 
NoisyFilename = input('Received signal filename: ', 's') ; 
 
[Benchmark, fs_b, nbits_b] = wavread(BenchmarkFilename); 
                                             % Benchmark is the signal, 
                                             % fs_b is the sampling frequency 
                                             % nbits_b is the bits per sample 
[NoisyBenchmark, fs_n, nbits_n] = wavread(NoisyFilename); 
                                             % NoisyBenchmark is the signal, 
                                             % fs_n is the sampling frequency 
                                             % nbits_n is the bits per sample 
 
                                              
                                              
%---------------------------------------------------------------% 
%                                                               % 
%       Calculate the offset and un-offset NoisyBenchmark:      % 
%                                                               % 
%---------------------------------------------------------------% 
 
% This algorithm can get confusing, so I'll explain it in detail before the code 
% becomes overwhelming.  The xcorr() function is somewhat hard to grasp. 
% xcorr(), when passed two vectors, does the following: 
%   1. zero-pads the shorter vector to be the same length as the longer 
%   2. creates a cross-correlation sequence of length 2n-1, where "n" is the 
%       length of the longer of the two input vectors.  The center of the 
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%       cross-correlation sequence is located at the "n"th index.  Going one way 
%       from the center corresponds to shifting one of the input vectors to the 
%       left or right and comparing the two vectors.  Going the opposite way 
%       from the center corresponds to shifting the same input vector in the 
%       opposite direction (right or left as opposed to left or right), and 
%       comparin the two vectors.  I have no idea which vector is shifted, and 
%       in which direction it is shifted for a given direction from the center 
%       of the cross-correlation sequence.  I don't think this is a problem as 
%       long as I consistently pass the input vectors in the same order. 
% The cross-correlation sequence is of length 2n-1, and the middle of the 
% sequence is at index 'n', where n is the length of the larger of the two 
% input vectors.  If I pass the benchmark signal first, then the maximum of the 
% cross-correlation sequence occurs to the left of the middle.  Recall that a 
% shift of one of the input vectors corresponds to a shift of the same amount 
% from the *center* of the cross-correlation sequence.  Thus, to find the 
% offset, I simply have to subtract the index of the maximum value in the 
% cross-correlation sequence from the center (which, again, is located at n). 
[MaxXCorr, IndexOfMaxXCorr] = max( abs( xcorr( Benchmark , NoisyBenchmark ) ) ) ; 
CenterOfXCorr = max( length(Benchmark), length(NoisyBenchmark) ) ; 
Offset = CenterOfXCorr - IndexOfMaxXCorr ; 
 
% Now, remove the extra samples from the NoisyBenchmark vector. 
NoisyBenchmark = NoisyBenchmark(Offset+1 : end) ; % Notice that I added 1 to 
            % Offset.  This is because MATLAB starts vectors at index 1, not 0. 
 
% Ideally, at this point, Benchmark and NoisyBenchmark are the same length.  
However, 
% this might not be the case.  If they are not the same length, there are two 
% possibilities: either NoisyBenchmark is smaller or NoisyBenchmark is larger. 
%  -If NoisyBenchmark is now smaller than Benchmark, then the *entire* benchmark 
signal 
%   wasn't included in the original NoisyBenchmark file.  This will generate an 
error 
%   message in the console window because we don't think we should judge DAQ 
%   based on an imcomplete received signal. 
%  -If NoisyBenchmark is now larger than Benchmark, then there is added noise at 
the end 
%   of the received file, so truncate the end as well. 
if length(NoisyBenchmark) < length(Benchmark)     % display error and exit the 
script 
    disp('ERROR: All of the benchmark signal was not included in the received 
signal'); 
    return 
elseif length(NoisyBenchmark) > length(Benchmark) % lop off the additional noise at 
the 
                                         % end of NoisyBenchmark 
    NoisyBenchmark = NoisyBenchmark(1 : length(Benchmark)); 
end 
 
% % DEBUG 
% figure(1) ; 
% subplot(211) ; 
% plot(Benchmark) ; 
% subplot(212) ; 
% plot(NoisyBenchmark) ; 
 
 
 
%------------------------------------------------------------% 
%       Calculate the scaling factor from Benchmark to       % 
%         NoisyBenchmark and descale NoisyBenchmark          % 
%                                                            % 
%------------------------------------------------------------% 
 
% This is pretty straightforward.  It simply implements a formula given to me by 
% Dr. Gross.  The formula is: 
%           benchmark' * noisy 
%         ---------------------- , where ' means transpose. 
%         benchmark' * benchmark 
% Multiplying a vector transposed by itself gives you the sum of the squares 
% of the individual values.  This is a measure of the power in the signal. 
% Thus, if the numerator was changed to "noisy' * noisy", then the result 
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% would be the square of the scale factor.  To get magnitude from power, 
% you take the square root.  The reason the formula works is because by 
% replacing noisy' with benchmark', you avoid having to take the square root. 
% This formula is actually functionally equivalent to: 
%         (   noisy   )         (   noisy   ) 
%      sum( --------- ) / length( --------- ) , 
%         ( benchmark )         ( benchmark ) 
% but the first formula is more efficient in MATLAB. 
 
A = (Benchmark.'*NoisyBenchmark) / (Benchmark.'*Benchmark) ; 
 
% Descale NoisyBenchmark to have the same overall magnitude as Benchmark: 
NoisyBenchmark = NoisyBenchmark ./ A ; 
 
% % DEBUG 
% figure(2) ; 
% subplot(211) ; 
% plot(Benchmark) ; 
% subplot(212) ; 
% plot(NoisyBenchmark) ; 
 
 
 
%---------------------------------------------------------------------------% 
%                                                                           % 
%        Form noise vector, calculate scaler signal and noise values        % 
%                                                                           % 
%---------------------------------------------------------------------------% 
 
NoiseVector = NoisyBenchmark - Benchmark ; % This is the noise signal present 
                                           % in the benchmark. 
% % DEBUG 
% figure(3) ; 
% plot(NoiseVector) ; 
 
% Recall that multiplying a transposed vector by itself yields the sum of the 
% squares of its values.  This is a measure of the total power present in the 
% signal. 
NoisePlusSignal = NoisyBenchmark.'*NoisyBenchmark ; % NoisyBenchmark is really 
% the benchmark plus the noise, so its power is really the noise+signal power. 
Noise = NoiseVector.'*NoiseVector ;  % NoiseVector is the noise vector, so its 
% power is the noise power. 
 
% % DEBUG 
% figure(4) ; 
% psd(NoiseVector, 256, fs_b) ; 
 
 
%-------------------------------% 
%                               % 
%        CALCULATE SINAD        % 
%                               % 
%-------------------------------% 
 
SINAD = 10*log10( (NoisePlusSignal) / Noise ) % since NoisePlusSignal and Noise 
% are formed from the *squares* of the values of NoisyBenchmark and NoiseVector, 
% they are *powers*, not *magnitudes*, so the dB for them is formed by 
% multiplying their logarithm by 10, not 20. 
 
Return
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function [noisy, offset, noise] = noisify (benchmark, fs, MaxOffsetPercent, 
NoiseStdDev) 
 
%   Function:   noisify( benchmark, fs, MaxOffsetPercent, NoiseStdDev ) 
%   Filename:  “noisify.m” 
%   Author:     1/c Tim Orr, US Coast Guard Academy,  
%   Inputs:     benchmark - an array of values that correspond to the magnitude 
%                           of a signal.  The signal input to this function will 
%                           be made noisy and offset in time.  In other words, 
%                           benchmark is the undistorted signal you wish to 
%                           randomly distort. 
%               fs    -     the sampling frequency of the benchmark signal. 
%                           This is used in filtering the noise to a reasonable 
%                           bandwidth. 
%               MaxOffsetPercent - the maximum percent of the benchmark signal's 
%                           length to use as the offset.  Default value is 30%. 
%               NoiseStdDev - the standard deviation of the added Gaussian 
%                           (Normal) noise.  The larger this number, the more 
%                           varied the noise is.  Default value is 10% of the 
%                           maximum absolute amplitude in the benchmark signal. 
%   Outputs:    noisy   -   noisy is the noisy version of the benchmark signal 
%                           that was input.  It will have some noise added in 
%                           and be offset in time. 
%               offset  -   this is the number of samples in time that the 
%                           signal was offset by.  The number is random, but is 
%                           limited to MaxOffsetPercent% of the signal's length. 
%               noise   -   this is the noise that was added to the offset 
%                           signal.  The noise array will have a length equal to 
%                           (benchmark's length + offset). 
%   Description: This function takes a non-distorted signal (a signal that is 
%               roughly crystal clear), adds random Gaussian noise to the signal 
%               (the noise has a standard deviation of NoiseStdDev), and offsets 
%               the signal by a random amount of time samples.  The amount of 
%               time samples that the signal is offset by is returned as the 
%               "offset" output.  The added noise is returned as the "noise" 
%               output.  The final distorted version of the benchmark signal is 
%               returned as "noisy".  This function returns the noise and offset 
%               so that the original signal can be reconstructed from the three 
%               outputs: subtract "noise" from "noisy", and then remove "offset" 
%               samples from the beginning of the ("noisy"-"noise") array. 
%   Assumptions: -The entire benchmark signal is included in the received signal 
%                -The benchmark and received signal are the same sampling 
%                   frequency 
 
%%%%  Error checking - making sure the input   %%%% 
%%%%  vector is either a column or row vector  %%%% 
[rows, cols] = size(benchmark) ; 
if rows==1 
    benchmark_is_row_vector = true ; 
elseif cols==1 
    benchmark_is_row_vector = false ; 
else 
    disp('ERROR: input array is not a column or row vector') ; 
    return ; 
end 
 
%%%%  Handle different numbers of inputs  %%%% 
if nargin < 4, NoiseStdDev = 0.1*max(abs(benchmark)); end; % the default 
                % standard deviation is 10% of the max amplitude of the signal. 
                % notice that I took the absolute value of "benchmark" before 
                % applying max.  This is to address a situation where the 
                % maximum amplitude actually occurs at a negative magnitude. 
                % max() ignores any negative value in lieu of a positive one 
                % (since positive numbers are greater than negative numbers), 
                % unless you apply abs() to the array before max(). 
if nargin < 3, MaxOffsetPercent = 30; end; % max offset value is 30% of the 
                                           % signal's length 
if nargin < 2, disp('ERROR: sampling frequency and/or benchmark are not 
specified'); return; end; 
            % if fs or benchmark are not specified, display an error and return 
     
%%%%   Now, I know that benchmark is either a column or row vector, that   %%%% 
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%%%%  benchmark and fs are specified, and that default values are set for  %%%% 
%%%%                    other arguments not specified                      %%%% 
%%  Offset the benchmark signal  %% 
range_of_offset_values = (MaxOffsetPercent/100)*length(benchmark); % I want an 
    % offset value between 0% and MaxOffsetPercent% of benchmark's length. 
    % Thus, the window of possible offset values has a width equal to  
    % MaxOffsetPercent% of benchmark's length.  Note that range_of_offset_values 
    % will rarely be an integer.  That's okay at this point because I'll round 
    % the result in the next step. 
offset = round( range_of_offset_values/2 + range_of_offset_values*rand  ); 
if benchmark_is_row_vector noisy = [zeros(1, offset) benchmark] ; 
else noisy = [zeros(offset, 1); benchmark] ; 
end;% if benchmark is a row vector, 
    % add a row of zeros to the left of the "benchmark" array and store it to 
    % noisy.  if its not a row vector, then it must be a column vector, so add 
    % a column of zeros to the top of the "benchmark" array.  Recall that the 
    % "benchmark" array MUST be either a row or column vector at this point 
    % because of the error checking at the beginning of the function. 
     
%%  Generate normally (Gaussian) distributed noise  %% 
noise = NoiseStdDev*randn(size(noisy)) ; % randn() yields normally distributed  
% random noise with mean 0 and variance 1.  Recall from statistics that when a 
% random variable is multiplied by a scalar, A, its variance is multiplied by 
% A^2, so its standard deviation (which is the square root of variance) is 
% multiplied by sqrt(A^2), or simply A. 
 
%%  Filter the noise:  %% 
% When adding random noise to a signal, one should limit the noise to the 
% bandwidth of the signal.  Most audio files tend to have a 3dB bandwidth of 
% around 8kHz, so I'll low pass filter the noise with a digital filter, which is 
% dependent on the sampling frequency, fs. 
 
% [num, den] = butter(10, 8000/(fs/2)) ; % this returns a digital (butterworth) 
%     % IIR filter.  The order is 10 (first parameter to butter()), and the cutoff 
%     % frequency is 8kHz.  Note that the cutoff frequency must be passed to 
%     % butter() relative to the Nyquist frequency, fs/2. 
 
 
Amax = 3 ;          % maximum attenuation in passband 
Amin = 8 ;         % minimum attenuation in stopband 
f_passband = 8000 ; % stopband frequency 
f_stopband = 9000 ; % passband frequency 
% If I remember correctly from Linear Circuits, we warp the digital frequencies 
% and treat them like analog filters, and then unwarp the results. 
%   prewarp the frequencies: 
w_passband = 2*pi*f_passband/fs; 
w_stopband = 2*pi*f_stopband/fs; 
w_passband = 2*tan( w_passband/2); 
w_stopband = 2*tan( w_stopband/2); 
%   treat like analog lowpass filter: 
ratio = w_stopband/w_passband; % ratio of stopband to passband frequencies for 
                               % calculating the filter's order 
order = ceil(log((10^(Amin/10)-1)/(10^(Amax/10)-1))/(2*log(ratio))) ; % order of 
                                               % the lowpass Butterworth filter 
s_poles = butpoles(order, Amax); % poles of the Butterworth Filter. 
%   unwarp the poles: 
s_poles = w_passband.*s_poles; % adjust for actual w_passband 
z_poles = (2+s_poles)./(2-s_poles); % transform poles from s plane to z plane 
%   construct coefficient arrays: 
b_secondorder = [1 2 1]; % set the numerator coefficients, which are the same.. 
b_firstorder = [1 1];    % .. for any two sections of the filter with the same.. 
                         % .. order. 
num = [1] ; den = [1] ; % start the numerator and denominator at 1 
for i = 1:floor(order/2) % this for loop calculates the 2nd order sections' 
                         % information and adds it to a cumulative denominator 
                         % and numerator 
   num = conv(b_secondorder, num) ; % update cumulative numerator 
   a = [1 -2*(real(z_poles(i))) (abs(z_poles(i)))^2] ; % (no idea why this works) 
   den = conv(a, den) ; % update cumulative denominator 
end ; 
if mod(order,2) == 1 % iff order is odd, calculate the first order info. 
    num = conv(b_firstorder, num) ; % final update of cumulative numerator 



  Appendix B 

14 

    den = conv([1 -real(z_poles(ceil(order/2)))], den) ; % (no idea why this works) 
end ; 
 
H = freqz(num, den, 1024) ; % get frequency response vector to attain the 
                            % currect DC gain 
num = num/abs(H(1)) ; % the magnitude of the first value of the frequency 
                      % response vector is the magnitude response at 0 
                      % frequency, a.k.a. the DC Gain.  Divide the numerator 
                      % coefficients by the DC Gain to make the DC Gain 1, or  
                      % 0dB. 
 
%% Filter the noise: %% 
noise = filter(num, den, noise) ; % apply the digital filter to the noise. 
 
%% Add the filtered noise: %% 
noisy = noisy + noise ; % the previous 'noisy' vector was simply the offset 
                        % benchmark.  After this command, it also contains the 
                        % noise, making it the final noisy vector. 
 
 
%% for debugging: %% 
% figure(1) 
% [H, w] = freqz(num, den, 1024) ; 
% plot(fs*w/2/pi, 20*log10(abs(H))); 
% title('freqz of the digital filter') 
% xlabel('frequency (Hz)') 
% ylabel('magnitude (dB)') 
% figure(2) 
% [H, w] = freqz(num/abs(H(1)), den, 1024) ; 
% plot(fs*w/2/pi, 20*log10(abs(H))); 
% title('freqz of the 0db dc gain digital filter') 
% xlabel('frequency (Hz)') 
% ylabel('magnitude (dB)') 
% figure(3) ; 
% psd(noise, 256, fs) ; 

 


