

Integrated Electronic Navigation Unit

1/C Hunter Atherton

Project Advisors: CAPT Richard Hartnett, Mr. Gregory Johnson,
and LT Michael Teixeira

Scholars Project
United States Coast Guard Academy

May 2005

Outline
1. Abstract
2. Introduction

a. Background on Integrated Receivers
b. Background on this project
c. Kalman Basics
d. Initial look at the proposed Integrated Receiver

3. Objectives
a. Investigating the ‘flavor’ of integration (tightly or loosely coupled)
b. IMU; collect, comprehend, manipulate, and analyze IMU data
c. GPS; learn GPS algorithm, comprehend and analyze all forms of GPS data
d. Kalman integrate IMU and GPS
e. LORAN; learn LORAN algorithm, comprehend and analyze all forms of

LORAN data
f. Kalman integrating all three systems

4. Technical System Description
a. IMU Descriptions

i. Accelerations, rates
ii. 6 DOF

iii. MEMS
b. GPS Descriptions

i. Raw Novatel Data and RINEX data
ii. Satellite Locations – ephemeris

iii. ECEF
iv. Antennae Position Finding

1. Pseudoranges
2. Clock Bias
3. Four Positions, Four Unknowns

v. GPS Toolbox – beta version
c. Kalman Filtering

i. Tightly Coupled vs. Loosely Coupled Discussion
ii. Loosely coupled design

1. Dynamics Conversion Algorithm
2. Local Space to World Space Conversion
3. Gravity Cancellation
4. Numerical Integration

iii. Tightly coupled design
iv. Kalman Equations
v. Kalman Matrices

vi. Kalman Loop
5. Initial Results – loosely coupled system

a. Performance of Fullrun/Dynamics Conversion
i. Marginal stability

ii. Gravity leakage
6. Current results – tightly coupled system

a. Status of code
b. GPS

7. Conclusions/Future Direction
8. Acknowledgements
9. References

Abstract
Several powerful agencies, including the US Department of Transportation, the UK
Ministry of Shipping, and the Office of the President of the United States have identified
an increasingly high level of dependence on the Global Positioning System (GPS). Also,
they have become aware of definite vulnerabilities to GPS; in light of these two findings,
they have called upon the engineering community to develop a backup to GPS. This
paper is a report on a navigation systems integration project sponsored by the Federal
Aviation Administration and the Department of Homeland Security. The goal of the
project is to use Kalman filtering to integrate GPS, Long Range Navigation (LORAN),
and Inertial navigation. The report includes overall system designs for tightly coupled
systems and loosely coupled systems and an analysis of each. Also discussed are local
space to world space conversions and the Euler angles associated with that process. We
constructed a complete dynamics conversion algorithm which produces the navigational
features of an Inertial Navigation System using the inputs from an Inertial Measurement
Unit. We reproduced the entire GPS algorithm in Matlab and we wrote all the Matlab
code to form a tightly coupled system which Kalman integrates GPS, an IMU and, a
magnetic compass.

Introduction

Background
GPS is increasingly relied upon for timing and positioning information; as each new civil
system becomes dependent on GPS, the potential devastation caused by a GPS jamming
attempt increases. The Volpe Report on GPS Vulnerability states:

“As GPS further penetrates into civil infrastructure, it becomes a tempting target
that could be exploited by individuals, groups or countries hostile to the United
States. The potential for denying GPS service by jamming exists. The potential
for inducing a GPS receiver to produce misleading information exists.”

Clearly, there is need for a system capable of withstanding GPS outages. There are
currently three primary electronic navigation systems available to the maritime
community: GPS, long range navigation (LORAN), and inertial navigation systems
(INS). Due to its accuracy and inexpensive receivers, GPS has become the primary, and
in most cases, the only navigation system on seagoing vessels. It is not prudent to rely
solely on one navigation system when it has known vulnerabilities. No single system is
adequate as a stand alone; there is need for an integrated electronic navigation system.

GPS is very effective in that it is relatively accurate: 13 meters horizontally and 22
meters vertically (95% of the time) (United, 3-6); however, it is vulnerable to both
intentional and unintentional jamming as well as blockages by buildings or large ships.
GPS consists of a constellation of 24 satellites in six orbital planes (United, 3-4). They
are in circular orbit at roughly 20,200 km above Earth. GPS is more vulnerable than
LORAN because of the distance between the receiver and the antennae, and the
frequency of the signal. GPS operates on two L-band frequencies: 1227.6 MHz and
1575.42 MHz; this is in contrast to LORAN which operates in the 90-110 KHz band.
The signals are traveling all the way from the satellites’ orbits, and they are far weaker

(higher frequency) signals to begin with. It is much easier for them be either blocked by
a large object, or jammed by a small, inexpensive antenna. The power contained in a
GPS signal is far less than the power contained in a LORAN signal, so the power of a
signal needed to jam GPS signal is far less then that of LORAN. Also, the low frequency
LORAN signal requires a very large antenna (several hundred feet long) for jamming.
GPS was developed by the Air Force, and it came on line in 1995 (United, 3-5).

The LORAN system is a network of land based antennas; similar to GPS, LORAN
operates on times of arrival of signals from broadcast antennae. The major difference is
that those antennae are welded in place on Earth, not orbiting in space. The system
suffers from lesser accuracy than GPS because the speed of a signal traveling close to
land is not as predictable as the speed of a signal traveling through space and atmosphere.
For purposes of position finding, it is assumed that the signals always travel over water;
however they often travel over land as well. The system is accurate to ¼ nautical mile,
but is highly repeatable (18-90 meters) and much more difficult to jam than GPS (United,
3-22). LORAN’s shortcoming is its relative inaccuracy; ¼ mile does not meet the harbor
Entrance and Approach requirements of 8-20 meters.

The third system, INS, is a navigation system that relies on sensors that observe the effect
of Newton’s laws of motion. There are typically six sensors: three gyroscopes and three
accelerometers; gyroscopes observe rates of rotation about an axis, and accelerometers
observe acceleration along an axis. There is one pair of sensors for each axis so that all
aspects of motion can be observed (Jekeli, 9). It is not a feasible standalone system
because, while it can produce position estimates indefinitely, each subsequent fix without
an external correction is less accurate. This is due to the stability problems associated
with numerical integration. The accelerations must be double integrated. It is a very
precise system and can be used for finite periods of time, as shown by the US Naval
submarine fleet; they do not have access to GPS or LORAN while underwater. An
inertial measurement unit (IMU) is a bundle of acceleration and rotation sensors which
provides raw acceleration and rate data; the INS is an IMU with the processing necessary
to create a three dimensional fix. After extensive research into the IMU’s on the market,
we decided to procure the IMU400CC from Crossbow Technologies, Inc.

Kalman Basics

Figure 1- The two steps to a Kalman Filter

A Kalman Filter is used in this project to integrate systems. The Kalman filter was
originally conceived in a paper written by R.E. Kalman in 1960; it is a minimum mean
squared estimate that operates in real time; it provides the optimal estimate given certain
assumptions of independence, system linearity, etc. It uses a two step process to
approximate a best available solution based on several different inputs (i.e. IMU, GPS,
LORAN) (Brown, 214). The two steps, shown in figure 1, are the prediction step and the
observation step.

Proposed Integrated Receiver
We are proposing the construction of an integrated electronic navigation unit that utilizes
GPS, LORAN and an INS. The system will implement a Kalman filter in either a loosely
or tightly coupled arrangement, and will provide fix information based on some form of
inputs from all three systems. The Kalman filter will provide feedback to the three input
systems for increased data quality. This integrated receiver will fulfill the need described
above for a system with greater data integrity and the ability to ‘coast’ through brief GPS
outages.

Objectives
The goal of this project is to develop a Kalman filter that will effectively integrate the
LORAN system, GPS system, and an INS into a navigation system that captures the best
characteristics of each individual system. This system will have the able to maintain
stable navigation during outages of individual systems. This undertaking is divided into
six more sizable targets:

I. Investigating the ‘flavor’ of integration (tightly or loosely coupled),
II. IMU; collect, comprehend, manipulate, and analyze IMU data,

III. GPS; learn GPS algorithm, comprehend and analyze all forms of GPS data,
IV. Kalman integrate IMU and GPS,
V. LORAN; learn LORAN algorithm, comprehend and analyze all forms of

LORAN data
VI. Kalman integrating all three systems

Our objectives are divided in this fashion so that we can make progress one step at a
time. Kalman integration of the IMU and GPS is a smaller undertaking then the full
integration of all three systems. This target is important because it will be a more basic
first step. It will allow us to become familiar with Kalman filtering, and it will shed light
on how our ultimate goal of integrating all three systems can be reached.

There are three flavors of system integration in use today: uncoupled, loosely coupled,
and tightly coupled (Greenspan, 191). We know that we want a system with some
feedback from the Kalman filter, but we do not know the degree of ‘coupling’ that is
appropriate. Uncoupled and loosely coupled both involve the GPS and the IMU
producing a full three dimensional fix and feeding that into the integration processor
(Kalman filter in our case). The principle difference between the two is that with a
loosely coupled system there is aiding and error state feedback directed from the
integration processor to the GPS and IMU so that the fix provided by the IMU does not
suffer from the instability described in the Introduction section. We began this project
with the expectation that we would not utilize the uncoupled method because while it is

the fastest, and easiest, we believe that the IMU would be of very limited utility without
an error state feedback to keep the IMU’s position from becoming inaccurate. The
difference between the remaining systems: tightly and loosely coupled systems, is that in
a tightly coupled system instead of a full three dimensional fix feeding into the
integration processor from the IMU and GPS, there are raw accelerations and
pseudoranges respectively. Our first undertaking (target I) is to investigate tightly and
loosely coupled systems and decide which one we will pursue.

The IMU, GPS, and LORAN (targets II, III, and V) analyses are an important aspect of
this project because in order to implement a Kalman filter the designer of the filter must
be very familiar with the stochastics of the data provided by each system in use. There is
a conversion from the raw data provided by the IMU to a three dimensional fix; this
necessitates a firm understanding of the data provided by the IMU and what
transformations it needs to go through to become a three dimensional position. Also, the
tightly coupled system will require the use of raw GPS and LORAN data, which will
make it absolutely essential to understand all the intricacies of the GPS and LORAN
algorithms so that raw pseudoranges and times of arrival can be utilized.

Technical System Description

IMU Description

Figure 2 – Crossbow IMU.

The IMU400CC that is being used in this project was purchased because its wide range
of functionality and simple interface seemed most feasible for seagoing assets operating
on current budget requirements. This particular unit, shown in figure 2, utilizes micro
electro mechanical systems (MEMS) technology. MEMS technology has not only
significantly reduced the size of many complex electronic systems (in this case
accelerometers and gyros) but also their cost. It was the advent of MEMS technology
that made it financially feasible for a standard surface shipboard navigation system to
utilize an IMU. The IMU 400CC has two modes of operation: polled and continuous.
The unit can be set to continually produce data at a rate of about 130 Hz, or it can

respond with a data packet only when prompted. It uses RS232 communications to
digitally deliver packets of 18, 8-bit unsigned integers. The first integer is a header,
which will always be all ones; the last is a checksum, which helps ensure proper
transmission has occurred. The remaining 16, 8-bit integers are converted to 8, 16-bit
signed integers. These 8 integers are than multiplied by various coefficients and become
six accelerations/rates plus temperature and time. The unit has an internal clock that
provides the time signature for each packet (Crossbow, 16). The IMU essentially
operates on inertia. It senses changes in both linear and angular motion and reports them.
Our unit reports linear accelerations along its axes and angular rates about its axes. All
three axes each then have two elements which are constantly monitored. This yields six
degrees of freedom and six outputs from the unit at all times. The configuration is
depicted in figure 3. All of the data is reported with respect to the unit’s local coordinate
system (Jekeli, 8). We call this coordinate system ‘local space,’ and much of our loosely
coupled algorithm is devoted to referencing data from local space to east north up (ENU)
coordinate system, or ‘world space.’ Another important consideration is the unit’s
inherent gravity bias. Along the vertical world space axis, there is a constant 1G of
acceleration that is observed by the unit. The G is the unit of acceleration equivalent to
the acceleration due to gravity on Earths surface. It is equivalent to 9.80665 meters per
second squared. The acceleration due to gravity must be taken into consideration at all
times to prevent erroneous data. The IMU400CC is the most financially sound system
available with the necessary features. The Matlab code that we use to extract data from
the IMU400CC is available in appendix 1.

Figure 3 – IMU Local Space Axes Orientation and Rates/Accelerations.

GPS Description

For the tightly coupled system, it is crucial to have a comprehensive fundamental
understanding the processing a GPS receiver performs to arrive at a three dimensional
fix. There are three major pieces of data that are downloaded by the receiver from the
GPS satellites: observations, almanac data, and ephemeras data. Observations are
constantly downloaded and contain the pseudorange data on all available satellites. A

pseudorange is the distance between the antennae and the satellite given that the clock on
the receiver is not perfectly aligned with the clock on the satellite. Because of clock drift,
the clocks are not aligned, and this is accounted for by the pseudorange. A pseudorange
differs from an actual range in accordance with the difference between the satellite’s
clock and the receiver’s clock. This time difference (called the user clock bias)
multiplied by the speed of the electromagnetic wave, 3x108m/s, yields the difference in
meters between a range and a pseudorange. Ephemera and almanacs are encoded within
the observation data stream, and they are available every ten to fifteen minutes. The
almanac is a set of time variant data points that mathematically depict a rough idea of the
location of a satellite, which can be used to determine elevation angle or azimuth angle.
This is allows for calculation of ionospheric and tropospheric errors, masking certain
angles for greater accuracy, and aligning the antennae for improved reception. The
ephemeras provides similar information to the almanac, with more precision; it is what is
used to find the exact location of a satellite for purpose of calculating a fix. Both the
ephemeras and almanac operate on the basis of time of week; a time of week is applied
and an earth-centered earth fixed (ECEF) three-dimensional fix is obtained.

Figure 4 – ECEF Coordinat System

ECEF, shown in figure 4, is the coordinate system typically used to describe satellite
location; the center of Earth is the origin. The Z axis is along the line drawn between
Earth’s north and south poles, the X axis is along the line protruding out of the point
where the prime meridian and equator meet, and the Y axis forms right angles with the X
and Z axis.

Estimate
Position

Lat(k), Lon(k),
Alt(k)

Measure GPS
PRs

Ionospheric
and

Troposheric
Correction

Lat(k), Lon(k), Alt(k)

Ionoi(k), Tropo(k)

Calculate
Updated
Satellite

Positions

SVposi(k)

Lat(k-1),
Lon(k-1),
Alt(k-1)

Find Satellite
Azimuth/
Elevation
Angles

SVElev(k)
+

4 Equations –
4 Unknowns

Position
Finder

Find Sat Travel
During Time of

Signal
Propagation

+

Corrected
Measured

PR’s

Measured
PR’s

Figure 5 – GPS Algorithm Block Diagram.

The process by which raw antennae data (ephemera and observations) are translated into
a position is shown in figure 5; the Matlab code that we developed to perform this is
available in appendix 7. For more details on the GPS position algorithm, see Misra
Pratap’s text. The two major sections of this process are the satellite location finding and
the antennae position finding.

Satellite Location Finding – Satellite location finding begins with a time of week, which
represents the time that the signal was received by the antennae. This time is not the
actual time that the signal was released from the satellite, so we have to take into effect
the time of propagation, which is subtracted from the time of reception. Time of
propagation is based on the pseudorange, assuming that the signal traveled at the speed of
light. This time of release is then used in conjunction with the ephemeris to produce an
ECEF location for the satellite.

Antennae Position Finding - The observations are embodied in the ‘Measure GPS PRs’
block, which is where the pseudoranges are extracted. The measured pseudoranges have
their ionospheric and tropospheric corrections applied and then they are sent to the
position finding function. The ionospheric and tropospheric corrections are there to
mitigate the delay caused by the ionosphere and troposphere; the degree to which the

signals are affected by these atmospheric layers is based on the elevation angle of the
satellite.

The position finding function evaluates position based on at least four pseudoranges and
four respective satellite positions. One pseudorange/satellite location pair proves that the
antenna is on a certain sphere around the satellite, two pairs prove that the antennae is on
a circle (the intersection of two spheres), three pairs prove that you are in a certain
location. The forth pair is necessary for determining the clock bias. As discussed earlier,
the clock in the GPS receiver is not going to be exactly aligned with the clocks in the
satellites, and this difference is referred to as the clock bias. Each pair form a line of
position; when calculating the intersection of these four lines of position a precise three
dimensional location and the clock bias can be determined. There are four unknowns (3
dimension of ECEF and user clock bias) and four equations (the four pairs).

When implementing this algorithm, and subsequent GPS algorithms, in Matlab we
utilized the Matlab GPS toolbox. The version we needed was not yet available, but we
had access to the beta version, which we modified and used extensively.

Kalman Filtering

Tightly vs Loosely Coupled System – Our initial decision was to investigate a loosely
coupled system. This system would take a three dimensional fix from the IMU, a three
dimensional fix from the GPS, and a two dimensional fix from LORAN. The Kalman
filter would use known data about each of these systems and produce an optimal three
dimensional fix. The block diagram that describes this process is in figure 6. We put
together the dynamics conversion algorithm (discussed later in this section) and
discovered that it was not as effective as we had hoped, so we reevaluated where we
wanted to take the project. We decided that we could either feed a lot of corrections back
to the dynamics conversion in an attempt to stabilize it; or we could change direction and
construct a tightly coupled system.

Figure 6 – Loosely Coupled System Design

There were several difficulties, discussed in the Dynamics Conversion Algorithm section
which made the loosely coupled system somewhat infeasible. A tightly coupled system
needs a much less complex Dynamics Conversion Algorithm, and after our difficulties
we decided to change direction towards tight coupling. Some of the advantages of the
tightly coupled system (aside from the absence of the Dynamics Conversion) are the
ability to operate on more limited navigational data sources. With a tightly coupled
system we do not need four line of sight satellites available to draw on that information.
We do not need all four LORAN towers available either; we can draw on any
combination of GPS and LORAN source and use them in conjunction with our IMU.
Presumably there will always be the 6 degrees of freedom available from the IMU. In
R.L. Greanspan’s paper regarding coupling, he concludes that tight coupling provides the
greatest performance at the expense of greater complexity. We decided that the benefits
of tight coupling outweigh the costs, so we designed the tightly coupled system.

Loosely Coupled Design - In this configuration, the GPS and LORAN receivers will
each produce a fix, and we will only process that full fix. The IMU, on the other hand,
does not produce a full fix; it produces the raw accelerations and rates. The majority of
our work in this configuration is then encompassed in the Dynamics Conversion section,
where we describe how we manipulate raw data into a three dimensional fix.

Dynamics Conversion Algorithm - The dynamics conversion proved to be a complex
aspect of the system. We implemented it in code, and it is available in appendix 2. There
are three major objectives of this algorithm:

 Local Space to World Space Transformation

 Gravity Cancellation

 Integration

Figure 7 – Dynamics Conversion Algorithm

Local Space to World Space Transformation - The Dynamics Conversion Algorithm is
shown in full in figure 7. The Find_New function in the algorithm houses the awareness
of the difference between local space and world space, and the vector transformation
algorithm. Find_New is available in appendix 4. On each iteration this function takes
the amounts of rotation about each axis that have occurred during that iteration (Theta)
and uses those to update the world space local space awareness; this awareness is
accomplished with a rotation matrix. The three by three rotation matrix is originally
calculated using the Euler Angles described by Christopher Jekeli. Each axis has its own
three by three matrix (Rx, Ry, and Rz) composed of sine and cosine calculations of the
degree of rotation about that particular axis. All three are then multiplied together to
arrive at the complete rotation matrix. The rotation matrix is depicted in figure 6 as
New_Rot for the current iteration and Present_Rot for the previous iteration.

()
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=

θθ
θθθ

cossin0
sincos0

001

xR

()
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=

θθ

θθ
θ

cos0sin
010

sin0cos

yR

()
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

100
0cossin
0sincos

θθ
θθ

θzR

Given Present_Rot, New_Rot can be determined by simply multiplying the R matrices by
Present_Rot where the R matrices represent changes in rotation about their respected
axes. If New_Rot and Present_Rot are aligned perfectly, the product Rx,*Ry*Rz will be a
three by three identity matrix.

tPresent_RoRzRyRxNew_Rot ∗∗∗=

A vector of accelerations along the axes is transferred from local space to world space
(also in the Find_New function) in a similar fashion. The vector of accelerations is
shown as A in figure 7; A is transformed from world space to local space by multiplying
it by the most up to date rotation matrix (New_Rot)

 LocalSpace WorldSpace A New_Rot A ∗=

Gravity Cancellation – Once the accelerations are in world space, we simply remove a
full Gravity of acceleration. This is after the vector has been converted from units of
Gravity to meters per second squared (1G = 9.80665 m/s2)

 9.806651] 0 [0-A A WorldSpaceWorldSpace ∗=

Numerical Integration - The two styles of integration that we investigated were
rectangular and trapezoidal integration. Rectangular integration in discrete time is
commonly referred to as accumulation, and it is essentially a summation of all values
scaled by the frequency at which the data was calculated.

 X[n]T 1]-Y[n Y[n] ∗+=

or in a post processing environment

 ∑
=

∗=
1

][T Y
n

nX

where T is the period of each iteration. Trapezoidal integration, instead of adding the
current value, adds the average of the previous value and the current value. This has the
effect of adding a trapezoid to the summation, rather than a rectangle.

2
1])-X[n(X[n]T 1]-Y[n Y[n] +∗+=

for post processing with this form, we use the filter command in Matlab with this transfer
function:

()21

21

1
4

1
2

1
4

1

−

−−

−

∗+∗+

Z

ZZ

(this is the transfer function for double integration, performed on accelerations; single
integration is the positive square root of this)

We tested both of these methods, and found them to be similar. However, a slightly more
stable system resulted when using trapezoidal integration. Though it was more stable, we
still had some significant gain problems arise from both methods of double integration.

Figure 8 – Pole Zero plot of Trapezoidal Integration

Figure 8 shows the pole zero plot of trapezoidal integration. There are two poles at Z = 1,
which equates to infinite gain given a DC (0 radians / second) input signal. Any bias in
the signal is a DC component, which will produce a quadratic output over time.

Figure 9 – Sample Data set from the IMU

A 900 second sample of data directly from the IMU is shown in figure 9; the only
processing that has occurred is the conversion from G’s to meters per second squared. It
is obvious that there is some bias in the signal, and we saw the effects of that bias in the
displacement, it was quadratic in every case. Something we worked extensively with was
how to remove that bias from the signal to get more reasonable data. In post processing
this wasn’t difficult as we could just subtract off the mean; however this is not a feasible
solution since we need a real time solution. Other attempts at removing the bias included
calculating the mean over a 1000 sample set and subtracting off that value from
subsequent data, high pass filtering the signal, and low pass filtering the signal. The most
successful attempt was the subtracting of the mean; however, even acceleration data with
the 1000 sample set mean removed still produced unstable displacement data after the
100th sample.

Figure 10 – Double Trapezoidal Integration of figure 9

The result of a double trapezoidal integration performed on the data shown in figure 9 is
shown in figure 10. Better results were produced when we subtracted off a 1000 sample
mean, and when we high pass filtered the data; however, even that data was exponential
when double integrated and was not usable. The Matlab code that we developed perform
both rectangular and trapezoidal integration is available in appendix 3.

Tightly Coupled Design –

Figure 11 – Tightly Coupled System Design

Figure 11 describes the algorithm that we decided on for our tightly coupled system. The
system operates on one second iterations and is based on GPS pseudoranges, IMU
readings, and a magnetic compass. It is designed to meet target IV of the objectives:
Kalman integrate IMU and GPS.

The IMU, in conjunction with the previous fix, produces the reference trajectory. This is
the estimated position for time K. It is the position at time K-1 with the velocity for the
time difference between K and K-1 (1 second) added to it. SystemPosition is shown in
figure 11 as Lat(k), Lon(k), and Alt(k); these are the three dimensional world space
positions of the user. Velocity E,N,U is the average velocity, along each axis, that the
IMU has calculated over the previous second. Given that the iteration time is one second,
it can simply be added to the previous system position to provide an updated estimated
system position.

SystemPosition(k) = SystemPosition(k-1) + VelocityENU

IMUProcess has a variation on the Dynamics Conversion Algorithm, which translates the
6 degrees of freedom into world space velocity. This includes a single trapezoidal
integration of linear accelerations and the world space local space awareness necessary to
convert between local space and world space.

This updated SystemPosition is then used to calculate pseudoranges using the reverse of
the GPS algorithm depicted in figure 5. Instead of calculating a position based on
pseudoranges, we calculate pseudoranges based on position. These pseudoranges have to
have the same ionospheric and tropospheric errors calculated and applied to them to
make them as close as possible to the measured pseudoranges. This is so that any
difference in the calculated and measured pseudoranges is representative of an error in
the reference trajectory. The satellite positions have to be calculated in the same manner
as before, and those are used in conjunction with the reference trajectory to make the
predicted pseudoranges. The predicted pseudoranges are fed into the Kalman Filter.

A similar process occurs with the magnetic heading. IMUProcess keeps track of the
world space local space awareness, and one component of that is the units rotation about
the vertical axis. This rotation can be correlated to the units magnetic heading;
IMUProcess produces an estimated magnetic heading, which is compared with the actual
magnetic heading. This error is also fed into the Kalman Filter.

The Kalman Filter runs on those two inputs and returns its estimate on how far off the
reference trajectory was. That estimate is applied to the reference trajectory to find the
final SystemPosition(k). The Kalman Filter also provides some feedback to the
IMUProcess to keep the integration from spinning out of control and to keep the
estimated magnetic heading in check.

Kalman Equations - As discussed in the introduction, the Kalman Filter moves in a two
step process: prediction and measurement. There is a fundamental recursive Kalman
equation for each of these steps; these equations essentially encompass the filter. The
process equation propagates forward from the current state to the next state. It models
the random process that we are estimating, in this case the world space location of the
receiver. The second equation is the measurement equation; it is a linear relationship that
models the relationship between the measurements and the states.

Measurement equation:

kkkk vxHZ +=

Process equation:

kkkk wxx +=+ ϕ1

where: kx - (n by 1) state vector at time tk

 kϕ - (n by n) matrix relating kx to 1+kx
 kw - (n by 1) vector; a white sequence with known covariance structure, Qk
 kz - (m by 1) measurement vector at time tk

kH - (m by n) matrix giving the ideal connection between the
measurement and state vector

kv - (m by 1) vector of measurement error with known covariance structure, Rk

Kalman Matrices - Our implementation of the Kalman filter is what is referred to as
extended. This means that the states that we are estimating are not states of the system
(i.e. position along world space north axis, ships heading etc) but rather the errors in
those states. Recall 11, the tightly coupled design. The Kalman filter has errors as both
inputs and outputs, and never has any awareness of actual states. This characteristic
makes our filter an extended Kalman filter.

The following are the measurement and process equations specific to this project.

Measurement equation:

k

ku

e

n

NNNNN

k

u
u

n
n

e
e

vz +

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∆
∆

∆
∆

∆
∆

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−

−−−
−−−

=

φ

φ

φ

γγαγα

γγαγα
γγαγα

&

&

&

MM

00sin00coscos00cossin
0000000
00sin00coscos00cossin
00sin00coscos00cossin

22222

11111

Process equation:

k

ku

e

n

kk w

u
u

n
n

e
e

x +

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∆
∆

∆
∆

∆
∆

=+

φ

φ

φ

ϕ

&

&

&

1

where: nα = Azimuth of satellite n
 nγ = Elevation angle of satellite n
 e∆ = The displacement error on the world space East axis
 e&∆ = The velocity error on the world space East Axis
 eφ = Platform tilt about the East Axis

note: replace e and East with n ,u, and North, Up respectively

Kalman Loop - The loop that we have implemented is a standard, well documented loop.
The proof behind it is available in Patrick Hwang’s book, and this section will discuss his
version of the loop; it is shown in figure 12.

Compute Kalman gain:

() 1−−− += k
T
kkk

T
kkk RHPHHPK

Update estimate with
measurement

()−− −+= kkkkkk xHzKxx ˆˆˆ
kz

Compute error covariance
for updated estimate:

() −−= kkkk PHKIP

Project ahead:

kkk xφx ˆˆ 1 =
−
+

k
T
kkkk QφPφP +=−

+1

kz

kx̂

−
0x̂

−
0P

Initial estimates of state
and covariance

measurements

State
estimates

Figure 12- Standard Kalman Filter loop from Brown and Hwang

The ‘update estimate with measurement’ frame is where the new state estimates (error
estimates in our case) are created. The state matrix is updated by a combination of the
measurements and the prediction. The weighting of this calculation is based on the
Kalman gain, Kk, and is divided between the measurement and the prediction. A high
Kalman gain puts weight on the measurements, zk; a low Kalman gain puts weight on the
prediction, which is the product of the state transition matrix, Hk, and the current state kx .

The error covariance, kP , is calculated in the ‘compute error covariance for updated
estimate’ frame. The error covariance is an [n X n] matrix representing the amount of
error in each state. It is calculated using the inverse of the error covariance matrix, the
Kalman gain, and the state transition matrix.

The next step, embodied in the ‘project ahead’ frame, is for the states and the error
covariances to propagate forward to the next time instance. They do so in accordance
with ϕ k, the difference being that the noise covariance, Kk, is added to the error
covariance to accurately model the actual noise in the system.

The following step is to compute the updated Kalman gain. This is done using the error
covariance matrix, the state transition matrix, and the measurement error covariance
structure. The Kalman filter is an adaptive filter; the key players that adapt within the
filter are the states and the error covariance. Other aspects of the filter change with
respect to external variables; for instance, the state transition matrix changes as the
satellite locations (azimuth and elevation angles) change.

Initial Results – Loosely Coupled System

Performance of Dynamics Conversion Algorithm
The Dynamics Conversion Algorithm suffered from the effects of integration. For the
purposes of testing our modifications to the algorithm and for testing all of the filtering,
we put together a real time debugging utility. The utility keeps track of the algorithm’s
understanding of the location and orientation of the unit.

Figure 13 – Screen Shot of the Real Time Graphical Debugging Utility

Figure 13 shows the graphical debugging utility. The multicolored cube is representative
of the IMU; that is, it is the local space and the background axes are the world space. The
code for the debugging utility is available in appendices 5 and 6.

As discussed in the Numerical Integration section, we attempted removing a
precalculated mean, high pass filtering, and low pass filtering. All of these attempts were
conducted in the above debugging utility, and none were found to be successful. The
local space cube would invariably drift off the screen, even in the absence of motion. For
this reason, we discontinued work on our loosely coupled system and began to look into
the tightly coupled system.

Another issue that we encountered with the loosely coupled system was the phenomenon
of gravity leakage. Minor imperfections in the local space world space awareness lead to
gravity leaking into the other axes. As it is subtracted off of the accelerations, if the
rotation matrix used to convert the accelerations is not exactly right, the gravity is
inaccurately subtracted off of axes where it never was in the first place. This hampered
our efforts and further encouraged us to pursue a tightly coupled system.

Current Results – Tightly Coupled System
Status of Code
We wrote all of the code in the tightly coupled design of figure 11; however, not all of it
works together. The code is available in appendices 8 and 9. The Kalman Filter was
written in different phases than the rest of the code, and it hasn’t been fully integrated
into the system yet. Because of this it is still undecided if our algorithm is a feasible
solution, or if many changes will have to be made.

GPS
When we decided to pursue the tightly coupled system, we knew that we would need a
fundamental understanding of the GPS algorithm. We were able to utilize the algorithm
in figure 5 to arrive at relatively accurate fixes. We began by downloading observation
and ephemeris data from the Moriches GPS station.

Figure 13 – Calculated Moriches Position from Raw GPS Data

When we ran that Moriches data through the algorithm in figure 5, we produced the
results shown in figure 13. Our fix is relatively accurate for an unaided (no differential or
WAAS correction) GPS fix.

 Figure 14 – Calculated Local Position from Raw GPS Data

When we ran our own data through the algorithm in figure 5, we produced the position
error shown in figure 14. Our fix shows an interesting phenomenon regarding ephemeris
data. A fault in our data recording utility caused us to only have access to the ephemeris
released closest to the end of capture time. We captured data for several hours, and so
much of our earlier data was used with an ephemeris that wasn’t going to be accurate for
several hours. Granted, the ephemeras accounts for time, many of the more intricate
aspects of the calculation change with time and are only accurate for a short duration. In
figure 14, the axes are in meters where (0,0) is the actual location of the antennae. The
blue plot is with ionospheric and tropospheric corrections and the green is without. In
terms of time, the most inaccurate points (most distant from (0,0)) are earliest, and as
time drew on and the ephemera that were being used became more and more accurate, the
position becomes much better.

Conclusions/Future Direction:
In terms or our original objectives, we met the first three targets. We gained a
fundamental understanding of inertial navigation and the global positioning, and we

thoroughly investigated tight and loose coupling with a Kalman filter. We came close to
reaching our fourth target of Kalman integrating a GPS and LORAN. In addition to the
knowledge I gained about GPS and INS, I also learned the fundamentals of designing and
implementing Kalman integrated system.

This project has promise to become an effective navigation system, and it should be
continued. The next step will be to finish and test the tightly coupled system and
eventually build a tightly coupled system with GPS, LORAN, and INS in accordance
with the originally stated objectives.

 Acknowledgments
I wish to acknowledge the contributions of CAPT Richard Hartnett, Mr. Keith Gross, Mr.
Gregory Johnson, and LT Michael Teixeira. Their efforts have not gone unappreciated.

References
Brown, Robert Grover, and Patrick Y.C. Hwang. Introduction to Random Signals and

Applied Kalman Filtering. 3rd ed. New York: John Wiley & Sons, 1997.

“DMU User’s Manual.” Crossbow. San Jose: Crossbow Technology. 2002.

“GPS Alternative.” Safety at Sea. November 2004.

Greenspan, R.L. GPS and Inertial Integration. Cambridge, MA: Charles Stark Draper

Laboratories. 1994.

Jekeli, Christopher. Inertial Navigation Systems with Geodetic Applications. Berlin:
 Walter de Gruyter, 2000.

Pratap, Misra, and Per Enge. Global Positioning System: Signals, Measurements and

Performance. Ganga-Jamuna, 2001.

United States. Department of Defense and Department of Transportation. 2001 Federal

Radionavigation Systems. Springfield, VA: National Technical Information
Service, 2001.

"Vulnerability Assessment of the Transportation Infrastructure Relying on the Global

Positioning System." Volpe. 2001. Volpe. 29 August 2001.

Appendix 1 – Matlab Code to Extract data from IMU400CC

%%%
% Function: CCData
% Purpose: Pulls desired number of samples off of the IMU
% Parameters: Num - Number of samples to be taken
% S - IMU Device/COMS handler
% Returns: Roll - A vector of angular velocity about the X axis
% in degrees per second
% Pitch - A vector of angular velocity about the Y axis
% in degrees per second
% Yaw - A vector of angular velocity about the Z axis
% in degrees per second
% XX - A vector of linear acceleration in the X
% direction in G's
% Y - A vector of linear acceleration in the Y
% direction in G's
% Z - A vector of linear acceleration in the Z
% direction in G's
% Time - A badly aliased vector of the devices time
% counts associted with each acceleration value
% Temp - The units temperature in degrees C
% Freq - Frequncy of data packet collection
%
% Author: 1/C Hunter T. Atherton
%
%%%

function [Roll,Pitch,Yaw,XX,Y,Z] = CCData(Num,s);
%function [Roll,Pitch,Yaw,XX,Y,Z,Time,Temp,Freq,X] = CCData(Num,s);

flushinput(s) % Clear input buffer
tic % Start timer (for Frequency calculation)

Cnt = 1; % Start counter for the while loop

while(Cnt <= Num) % Fill each vector with data until the required
 % number of samples have been collected

fprintf(s,'G') ; % Request a data packet
X =fread(s,18,'uint8'); % Pull the first byte off of the input buffer
 % (always should be unsigned 8 bit integer 255)

if (X(1) ~= 255) % If the first byte was not correct return
 ClearInput
 disp('Input Mismatch, rerun the function')

 return
end

Roll(Cnt) = 256*X(2)+X(3); % Convert the two bytes into the required data
 if (Roll(Cnt) > 32767) % Adjust for two's complement
 Roll(Cnt) = Roll(Cnt) - 65536;
 end
Roll(Cnt) = Roll(Cnt)*.00457763671875; % Apply the manufacturer's correction

Pitch(Cnt) = 256*X(4)+X(5);
 if (Pitch(Cnt) > 32767)
 Pitch(Cnt) = Pitch(Cnt) - 65536;
 end
Pitch(Cnt) = Pitch(Cnt)*.00457763671875;

Yaw(Cnt) = 256*X(6)+X(7);
 if (Yaw(Cnt) > 32767)
 Yaw(Cnt) = Yaw(Cnt) - 65536;
 end
Yaw(Cnt) = Yaw(Cnt)*.00457763671875;

XX(Cnt) = 256*X(8) + X(9);
 if (XX(Cnt) > 32767)
 XX(Cnt) = XX(Cnt) - 65536;
 end
XX(Cnt) = XX(Cnt)*.000091552734375;

Y(Cnt) = 256*X(10) + X(11);
 if (Y(Cnt) > 32767)
 Y(Cnt) = Y(Cnt) - 65536;
 end
 Y(Cnt) = Y(Cnt)*.000091552734375;

Z(Cnt) = 256*X(12)+X(13);
 if (Z(Cnt) > 32767)
 Z(Cnt) = Z(Cnt) - 65536;
 end
 Z(Cnt) = Z(Cnt)*.000091552734375;

 Temp(Cnt) = bin2dec([dec2bin(X(14),8),dec2bin(X(15),8)]);

 Temp(Cnt) =((Temp(Cnt)*5/4096)-1.375)*44.44;

 Time(Cnt) = bin2dec([dec2bin(X(16),8),dec2bin(X(17),8)]);

 if (mod(sum(X(2:17)),256) - X(18) ~= 0)
 disp('ERROR: summation')
 return

 end

Cnt=Cnt+1;

end

Appendix 2 – Matlab Code to Perform Dynamics Data Conversion

%%%
% m-file: FullRun
% Purpose: Gets data off the IMU, removes the gravity
% acceleration, appropriately integrates the data, and
% keeps track of its position relative to the
% coordinate axes
%
% Author: 1/C Hunter T. Atherton
%
%%%

% Declare initial state & create blank data structures

%load ThousandStillSamplesAcc
%load FourNineteen
%
% X_Accold = X_Acc;
% Y_Accold = Y_Acc;
% Z_Accold = Z_Acc;
% XRateold = XRate;
% YRateold = YRate;
% ZRateold = ZRate;
%

%clear XCoord YCoord ZCoord VelocityX VelocityY VelocityZ XAngle YAngle ZAngle XRate
YRate ZRate X_Acc Y_Acc Z_Acc

Theta = [0; 180; 90];

[New_Tran, New_Rot] = Find_New([0;0;0], Theta, [0;0;0], [1 0 0; 0 1 0; 0 0 1])

 % Rotational matrix describes the angular
 % relationship between local and world
 % space. The unit is initialized to
 % this orientation because it's
 % positive Z axis points down while
 % our defined world space positive Z axis
 % points up.

 % New_Tran Vector describes the linear
 % relationship between local and world
 % space

LocalDisp = [0; 0; 0;]; % Holds the linear displacement data
 % in between integrate() and findnew()

Theta = [0; 0; 0;]; % Holds the angular displacement data
 % in between integrate() and findnew()

%Freq = 9; % Initialize the frequency for the first
 % integration

Freq = 9.9266;

OldA = 0; % Trapezoidal integration requires that
OldW = 0; % the previous acceleration, velocity,
OldVelocity = 0; % and angular rates; they are all
 % 0 initially.

XAngle(1) = 0;
YAngle(1) = 0;
ZAngle(1) = 0;
%[bias_wx, bias_wy, bias_wz, bias_x, bias_y , bias_z] = CallibrateMan(100,s)

%Initialize data members and variables for the real time plot
%and start up the plot
 cubesize=.5;
 a=cubesize*[-1 1 -1 1;1 -1 -1 1;1 -1 -1 1;-1 1 -1 1]; % a 4x4
 b=cubesize*[-1 1 1 -1;-1 1 -1 1;-1 1 -1 1;-1 1 1 -1]; % b 4x4
 c=cubesize*[1 1 1 1;1 1 1 1;-1 -1 -1 -1;-1 -1 -1 -1]; % c 4x4

% 3D_Plot start up
 figure(1);
 cube_plot_3D(a,b,c,[0;0;0],New_Rot,1,Freq);
 pause(.0001);

% figure(2)
% plot(New_Tran(1), New_Tran(2), 'r');
% X = [0 0 0 -10 -20 -30 -40];
% Y = [0 10 20 20 20 20 20];
% hold on;
% plot(X, Y, 'g');
% title('Overhead View');
% xlabel('X axis');
% ylabel('Y axis');
% Legend('Me�asured','Reality');

% pause(.0001);

FreqVect = [0]; % Vector holds frequencies of each iteration

Num = 1; % Number of data samples to get from CCData

for i = 1:60,

 tic % start the frequency timer
 Present_Rot = New_Rot; % rotate the rotational variable assignments
 Present_Tran = New_Tran; % rotate the linear variale assignments

 [w_x,w_y,w_z,aa_x,aa_y,aa_z] = CCData(Num,s); % Pull in the data from the Unit

% w_x = XRateold(i);
% w_y = YRateold(i);
% w_z = ZRateold(i);
% aa_x = X_Accold(i);
% aa_y = Y_Accold(i);
% aa_z = Z_Accold(i);
%

 w_x = w_x - bias_wx;
 w_y = w_y - bias_wy;
 w_z = w_z - bias_wz;
 aa_x = aa_x - bias_x;
 aa_y = aa_y - bias_y;
 aa_z = aa_z - bias_z;

 %Convert from G's to m/s/s
 aa_x=aa_x*-9.80665; % The negative multiplier realigns the axes so
 aa_y=aa_y*-9.80665; % that a positive acceleration value represents the unit
 aa_z=aa_z*-9.80665; % accelerating along that axis in it's positive direction
 % as opposed to its negative direction.
 w_x = -w_x;
 w_y = -w_y;
 w_z = -w_z;

 % Fill initial data vectors
 W = [w_x; w_y; w_z]; % vertical matrix of angular rotation
 AA = [aa_x; aa_y; aa_z]; % vertical matrix of linear acceleration

 Theta = num_int_trap(0, OldW, W, Freq);
 OldW = W;

 % Integrate changes angular rate (W) and linear acceleration (A) into a
 % local displacement vector (LocalDisp) and change in rotation (Theta)

 Theta = Theta*pi/180; % degrees to radiuns correction

 % Create the matrices for changing local displacements into world
 % displacements
 R1 = [1 0 0; 0 cos(Theta(1)) sin(Theta(1)); 0 -sin(Theta(1)) cos(Theta(1))];

 R2 = [cos(Theta(2)) 0 -sin(Theta(2)); 0 1 0; sin(Theta(2)) 0 cos(Theta(2))];

 R3 = [cos(Theta(3)) sin(Theta(3)) 0; -sin(Theta(3)) cos(Theta(3)) 0; 0 0 1];

 % Create the change rotation matrix
 Change_Rot = R3*R2*R1;

 %Change the rotation
 New_Rot = Change_Rot*Present_Rot;

% while (i < 90)
% Theta = [0; 0; i];
% end
%
% while ((i > 90) && (1 >270))
% Theta = [0; i-90; Theta(3)];
% end

 %[New_Tran, New_Rot] = Find_New([0;0;0], Theta, [0;0;0], Present_Rot)

 A = New_Rot*AA - [0;0;1]*9.80665;

 % Integrate
 Velocity = num_int_trap(OldVelocity, OldA, A, Freq);
 LocalDisp = num_int_trap(0, OldVelocity, Velocity, Freq);
 OldA = A;
 OldVelocity = Velocity;

 % Calc_New_Data
 New_Tran = LocalDisp + Present_Tran;

 % Find distance from origen (New_Tran) and rotation relative to
 % coordinate axes (New_Rot)

 % % 3D_Plot

 cube_plot_3D(a,b,c,New_Tran ,New_Rot,i,Freq);

 %plot(New_Tran(1), New_Tran(2), 'r');

 % Realtime Graphical Debugging utility.
 % Should be commented out when not in use
 pause(.0001);

 % Create a vector of distance from the origin along the 3 axes
 % Should be commented out when not in use
 XCoord(i) = New_Tran(1);
 YCoord(i) = New_Tran(2);
 ZCoord(i) = New_Tran(3);

 % Create a vector of angular rotation about the 3 axes
 % Should be commented out when not in use
 XAngle(i+1) = Theta(1)+XAngle(i);
 YAngle(i+1) = Theta(2)+YAngle(i);
 ZAngle(i+1) = Theta(3)+ZAngle(i);

 % Create vectors of angular rate about the 3 axes
 % Should be commented out when not in use
 XRate(i) = w_x;
 YRate(i) = w_y;
 ZRate(i) = w_z;

 X_Acc(i) = aa_x;
 Y_Acc(i) = aa_y;
 Z_Acc(i) = aa_z;

 VelocityX(i) = Velocity(1);
 VelocityY(i) = Velocity(2);
 VelocityZ(i) = Velocity(3);

 % Frequency calculation
 t(i) = toc;
 Freq=1/t(i);
 FreqVect(i) = Freq;

 %FinalData = [XCoord' YCoord' ZCoord' VelocityX' VelocityY' VelocityZ' XAngle(2:i+1)'
YAngle(2:i+1)' ZAngle(2:i+1)' XRate' YRate' ZRate' X_Acc' Y_Acc' Z_Acc'];

 %save NeweData FinalData;

end
% figure(1)
% plot(XCoord)
% figure(2)
% plot(YCoord)

% figure(3)
% plot(ZCoord)
%
% mean(FreqVect)

%ShowOldData(-1,0)

Appendix 3 – Matlab Code to Perform Trapezoidal Integration
(Note the commented section for performing rectangular integration)

function [y_n]=num_int_trap(y_n_1, x_n, x_n_1, freq);
% function [y_n]=num_int_trap(y_n_1,x_n,x_n_1,freq);
%
% This function employs the trapezoid rule in the numerical intergration
% of a discrete signal.

y_n=y_n_1+(x_n+x_n_1)/2/freq; % trapazoid rule

%y_n = x_n_1*(1/freq) + y_n_1; % rectangular rule

Appendix 4 – Matlab Code to Perform Local Space to World Space Conversion

%%%
% Function: Find_New()
% Purpose: Creates updated displacement vectors for rotation
% and acceleration
%
% Parameters: Local_Disp - Gravity corrected linear
% displacement column vector - Local
% Space
% Theta - Angular displacement column vector
%
%
% Authors: 1/C Hunter T. Atherton

LT Teixeira

%
%
%%%

function [New_Tran, New_Rot] = Find_New(Local_Disp, Theta, Present_Tran, Present_Rot)

Theta = Theta*pi/180; % degrees to radiuns correction

% Create the matrices for changing local displacements into world
% displacements
R1 = [1 0 0; 0 cos(Theta(1)) sin(Theta(1)); 0 -sin(Theta(1)) cos(Theta(1))];

R2 = [cos(Theta(2)) 0 -sin(Theta(2)); 0 1 0; sin(Theta(2)) 0 cos(Theta(2))];

R3 = [cos(Theta(3)) sin(Theta(3)) 0; -sin(Theta(3)) cos(Theta(3)) 0; 0 0 1];

% Create the change rotation matrix
Change_Rot = R3*R2*R1;

%Change the rotation
New_Rot = Change_Rot*Present_Rot;

%Change the translation, based on the new rotation
New_Tran = Present_Tran + New_Rot'*Local_Disp;

% New_Tran and New_Rot are in world space

Appendix 5 – Matlab Code to Run the Real Time Debugging Utility

function []=cube_plot_3D(a,b,c,vector_disp,matrix_rotate,i,Freq);
% Function Name: cube_plot_3D.m
% Author: LT Michael Teixeira
% Last updated: 18 Nov 04
%
% This function plots the 3D movement of a cube. The inputs to the
% function are as follows:
% vector_disp = the position of the cube relative to some world origin.
% vector_disp is a 3x1 vector with the xyz displacement values as its
% entries in meters.
% matrix_rotate = the rotation matrix of the cube relative to some world
% fixed axis system. matrix_rotatate is a 3x3 matrix with no units.
%
% The output is a 3D plot of a cube with the given displacement and
% rotation as specified by the inputs.
%
% Note: This function requires the use of the "rotate_cube()" function
% and they must be in the same working directory.

% Set the size of the cube with the cubesize variable. Note: cubesize times 2 is the side
% length of the cube.

% cubesize=1.5;

% matrices a,b,c are 4x4 matrices that indicate line segments to form a
% cube in 3D space. The cube is 2x2x2 and is centered at the world space
% origin. a,b,c are scaled by cubesize to generate an accurate cube size.

%a=cubesize*[-1 1 -1 1;1 -1 -1 1;1 -1 -1 1;-1 1 -1 1]; % a 4x4
%b=cubesize*[-1 1 1 -1;-1 1 -1 1;-1 1 -1 1;-1 1 1 -1]; % b 4x4
%c=cubesize*[1 1 1 1;1 1 1 1;-1 -1 -1 -1;-1 -1 -1 -1]; % c 4x4

% This function rotate the a,b,c cube matrices by the new rotation matrix,
% matrix_rotate. This function must be in the same work directory.

[d,e,f]=rotate_cube(a,b,c,matrix_rotate);

matrix_rotate;

% world_x,y,z is a matrix combination that indicates the current position
% and rotation of the line segments that form the cube.

world_x=vector_disp(1)*ones(4,4) + d;
world_y=vector_disp(2)*ones(4,4) + e;
world_z=vector_disp(3)*ones(4,4) + f;

% h=plot3() function generates a 3D plot of the abc cube in world space and
% creates a handle vector h that contains the graphics handles for the
% cube. The axis size is set with the L variable (in meters).

h=plot3(world_x,world_y,world_z);
L=3;
axis(L*[-1 1 -1 1 -1 1]);
grid
xlabel('X-axis (meters)');
ylabel('Y-axis (meters)');
zlabel('Z-axis (meters)');
title('Dynamics Algorithm Debugging Tool');
S1=['Sample Number: ' num2str(i)];
text(-L,L,1.5*L,S1);
S2=['Time (sec): ' num2str(i/Freq)];
text(0.5*L,-L,1.6*L,S2);

% Use hold on command to leave a trail of the past cube positions.

% hold on

Appendix 6 – Matlab Code to Rotate the Cube within cube_plot_3D (Appendix 5)

function [d,e,f]=rotate_cube(a,b,c,rot);
% Function Name: [d,e,f]=rotate_cube(a,b,c,rot);
% Author: Michael Teixeira
% Last updated: 18 Nov 04
%
% This function rotates a set of matrices representing a cube in 3D space about
% the origin according to the input rotation matrix.
%
% The inputs are as follows:
% a,b,c are 4x4 line segment matrices that indicate the vertices of a 3D
% cube.
% rot is the rotation matrix that indicates the new orientation of the
% cube.
% The outputs are as follows:
% d,e,f are 4x4 line segment matrices that indicate the new vertices of
% the 3D cube after the specified rotation.
%
% Note: This function is normally called by the cube_plot_3D() function.

d=zeros(4,4);
e=zeros(4,4);
f=zeros(4,4);

for i=1:4,
 for j=1:4,
 gg=rot*[a(i,j) ; b(i,j) ; c(i,j)];
 d(i,j)=gg(1);
 e(i,j)=gg(2);
 f(i,j)=gg(3);
 end
end

Appendix 7 – Matlab Code for Calculating a GPS Fix from Local Data Without Analysis

%% GPS Test
%
% Gregory Johnson
% JJMA, March 2005

% convert RINEX files to Matlab
% xrinexn for .0Xn files
% xrinexo for .0Xo files

% Modified: April 2005 by 1/C Atherton
% Action: Addition of data prefiltering for use with local dat
% Removal of end data analysis
% Rename to GPStestmodd

clear all

% load constants
wgs84con
% ionospheric corrections set constants
ionocon % stores in global variable alpha and beta
% tropospheric correction constants
load tgeoid84.dat

% current position -- known location
refPos = [41+22.348/60 -(72+5.987/60)];
refECEF = tgdecef(deg2rad(refPos(1)),deg2rad(refPos(2)),-24.116)';

% load the ephemeris -- this is the Eph file created by xrinexn
D = textread('Nov_PseudoIII.eph','');

NumEphems = length(D(:,1));
MaxLength = 0;
p = 1;
while p < NumEphems
 Toe = D(p,2);
 SameToe = find(D(:,2)==Toe);
 if MaxLength < length(SameToe)
 MaxLength = length(SameToe);
 NewEphem = SameToe;
 end
 p = p + length(SameToe);
end

D = D(NewEphem,:);

satnum = D(:,1);
edata = D(:,2:21);

% sat number then 20 fields of edata
% edata(1) - input, toe, reference time ephemeris, in seconds
% edata(2) - input, smaxis (a), semi-major axis, in meters
% edata(3) - input, ecc (e), satellite eccentricity
% edata(4) - input, izero (I_0), inclination angle at reference time,
% in radians
% edata(5) - input, razero (OMEGA_0), right ascension at reference
% time, in radians (longitude of ascending node of orbit
% plane at weekly epoch)
% edata(6) - input, argper (omega), argument of perigee, in radians
% edata(7) - input, mzero (M_0), mean anomaly at reference time, in
% radians
% edata(8) - input, radot (OMEGA_DOT), rate of right ascension, in
% radians/second
% edata(9) - input, deln (delta_n), mean motion difference from
% computed value, in radians/second
% edata(10) - input, idot (I_DOT), rate of inclination angle, in
% radians/second
% edata(11) - input, cic, amplitude of the cosine harmonic
% correction term to the angle of inclination, in radians
% edata(12) - input, cis, amplitude of the sine harmonic correction
% term to the angle of inclination, in radians
% edata(13) - input, crc, amplitude of the cosine harmonic correction
% term to the orbit radius, in meters
% edata(14) - input, crs, amplitude of the sine harmonic correction
% term to the orbit radius, in meters
% edata(15) - input, cuc, amplitude of the cosine harmonic correction
% term to the argument of latitude, in radians
% edata(16) - input, cus, amplitude of the sine harmonic correction
% term to the argument of latitude, in radians
% edata(17) - input, af0, satellite clock bias, in seconds
% edata(18) - input, af1, satellite clock drift, in seconds/seconds
% edata(19) - input, af2, satellite clock drift rate, in seconds/seconds**2
% edata(20) - input, tgd, time group delay, in seconds

% load the observations - this is Obs file created by xrinexo
D = textread('Nov_PseudoIII.obs','');
% first col is Time of Week, 2nd is PRN, 3rd thru end is data based on
% header

NewPRN = 0;
for z = 1:length(D(:,1))
 if (find(D(z,2) == satnum))
 NewPRN = [NewPRN z];
 end
end
NewPRN = NewPRN(2:end);
D = D(NewPRN,:);

TOW = D(:,1);
PRN = D(:,2);
C1 = D(:,3);

%% want to loop through each set of data -- based on TOW

maxrow = length(TOW(1:20000))
r_index = 1;
s_index = 1;
FixNum = 1;
elev = zeros(40,1000);
ditched = elev;

while r_index<(maxrow)

 % find right time of ephemeris -- use the last ephemeris before the
 % current TOW

 tobs = TOW(r_index);

 teph = edata(1,1);

 % get satellites for first fix -- from obs file
 II = find(TOW==tobs);
 sats = PRN(II); % sats observed
 Pr = C1(II); % c/a L1 pseudoranges

 fig_text = 'C/A on L1';
 % loop through each satellite and calculate the satellite position and
 % then the range to the satellite from the current position
 numsats = length(sats);
 svECEF = zeros(1,3);
 R = zeros(numsats,1);
 az = R;
 icorr = R;

 tcorr = R;
 ucbias = 0;
 svcc = R;
 n = 1;

 while (n <= numsats)

 % need to calculate time of transmission based on current time and
 % distance
 time_tr = tobs - (Pr(n) - ucbias + svcc(n))/c_speed; % where did c_speed come from????
 % need to match up the right row of epem data
 r = find(satnum==sats(n) & edata(:,1)==teph);

 % sat position
 svpos = svpeph(time_tr,edata(r,:));

 % adjustment of measurements
 toe = edata(r,1);
 smaxis = edata(r,2);
 ecc = edata(r,3);
 af(1) = edata(r,17);
 af(2) = edata(r,18);
 af(3) = edata(r,19);
 grpd = edata(r,20);
 svcc(n) = svclockc(time_tr,toe,smaxis,ecc,af);
 Pr(n) = Pr(n) + svcc(n) - grpd;

 % adjustment of satellite position due to earth rotation effect
 theta = rot_rate*(Pr(n)/c_speed);
 temp1 = cos(theta);
 temp2 = sin(theta);
 svpos1(1) = svpos(1)*temp1 + svpos(2)*temp2;
 svpos1(2) = -svpos(1)*temp2 + svpos(2)*temp1;
 svpos1(3) = svpos(3);

 [elev(n) az(n) ulos(n,:) R(n)] = elevaz(refECEF,svpos1);
 icorr(n) = ionoc(deg2rad(refPos(1)),deg2rad(refPos(2)),elev(n),az(n),tobs,alpha,beta);
 tcorr(n) = tropoc1(deg2rad(refPos(1)),deg2rad(refPos(2)),-24.116,elev(n),tgeoid84);

 elev1(sats(n),FixNum) = rad2deg(elev(n)); % find elevation angles

 if (elev1(sats(n),FixNum) > 10)
 svECEF(n,1) = svpos(1)*temp1 + svpos(2)*temp2;
 svECEF(n,2) = -svpos(1)*temp2 + svpos(2)*temp1;
 svECEF(n,3) = svpos(3);
 else
 ditched(sats(n),FixNum) = 1;

 sats(n);
 numsats = numsats - 1;
 Pr = Pr(find(PRN(II)~=sats(n)));
 n = n - 1;
 end

 n = n + 1;

 end % of for loop

 % calculate position solution

 [upos] = uposit(svECEF,Pr,[0;0;0],5);
 [lat(FixNum) lon(FixNum) alt(FixNum)] = tecefgd(upos);

 [upos1] = uposit(svECEF,Pr-icorr-tcorr,[0;0;0],5);
 [lat1(FixNum) lon1(FixNum) alt1(FixNum)] = tecefgd(upos1);

 satuseds(s_index) = numsats;
 user_time(s_index) = tobs;

 % update indexes
 r_index = r_index + numsats;
 s_index = s_index+1;
 FixNum = FixNum + 1;

end % of while loop

% Stats & Plots
% Determine position error statistics

RefLat = refPos(1)*1852*60;
RefLon = refPos(2)*cos(refPos(1))*1852*60;

latt = rad2deg(lat)*1852*60 - RefLat;
lonn = rad2deg(lon)*cos(refPos(1))*1852*60 - RefLon;

lattt = rad2deg(lat1)*1852*60 - RefLat;
lonnn = rad2deg(lon1)*cos(refPos(1))*1852*60 - RefLon;

figure(1)
plot(lonn,latt,'*g')
axis([-30 30 -30 30])
grid
hold on
plot(lonnn,lattt,'*b')
plot(0,0,'*r')

Appendix 8 – Matlab Code to Perform Tightly Coupled Integration
(Prior to Addition of Kalman Filter)

%GPS SETUPS
rinexo('Nov_PseudoIII.05o');
rinexn('Nov_PseudoIII.05n');

% current position -- known location
refPos = [41+22.348/60 -(72+5.987/60)];
refECEF = tgdecef(deg2rad(refPos(1)),deg2rad(refPos(2)),-24.116)';

D = textread('Nov_PseudoIII.eph','');

NumEphems = length(D(:,1));
MaxLength = 0;
p = 1;
while p < NumEphems
 Toe = D(p,2);
 SameToe = find(D(:,2)==Toe);
 if MaxLength < length(SameToe)
 MaxLength = length(SameToe);
 NewEphem = SameToe;
 end
 p = p + length(SameToe);
end

D = D(NewEphem,:);

satnum = D(:,1);
edata = D(:,2:21);
% sat number then 20 fields of edata

% load the observations - this is Obs file created by xrinexo
D = textread('Nov_PseudoIII.obs','');
% first col is Time of Week, 2nd is PRN, 3rd thru end is data based on
% header

NewPRN = 0;

for z = 1:length(D(:,1))
 if (find(D(z,2) == satnum))
 NewPRN = [NewPRN z];
 end
end

NewPRN = NewPRN(2:end);
D = D(NewPRN,:);

TOW = D(:,1);
PRN = D(:,2);
C1 = D(:,3);

% MagComp setups
% INPUT THE MAGNETIC COMPASS READINGS FOR ONE SECOND INTERVALS WITH
THE
% VECTOR FOR HEADING: Heading

%% NOT SURE HOW TO INITIALIZE THESE
%IMU Setups
Compass = 0; %initial heading in degrees tru
Attitude = [180; 0; 90]
FreqIMU = 130;
Attitude = Attitude + Rates;
R1 = [1 0 0; 0 cos(Attitude(1)) sin(Attitude(1)); 0 -sin(Attitude(1)) cos(Attitude(1))];
R2 = [cos(Attitude(2)) 0 -sin(Attitude(2)); 0 1 0; sin(Attitude(2)) 0 cos(Attitude(2))];
R3 = [cos(Attitude(3)) sin(Attitude(3)) 0; -sin(Attitude(3)) cos(Attitude(3)) 0; 0 0 -1];
Rotation = eye(3)*eye(3)*R3;

%GLOBAL SETUPS
WS_VelErrors = [0; 0; 0];
WS_Velocity = [0; 0; 0];
WS_PosOld = [0; 0; 0];

%LOOP BEGINS
for Time = TOW(1):NumSamples
 [Attitude, Rotation, WS_Velocity] = IMUProcess(Attitude, Rotation, Time, WS_Velocity,
WS_VelErrors, AttErrors);
 WS_EstPos = WS_PosOld + WS_Velocity;
 GetSVpos;
 SV_PPR = SV_PR + icorr + tcorr;
 PRErrors = SV_PPR - SV_MPR;
 MagError = Attitude(3)-Heading(Time - TOW(1);

 %%%
 % Kalman Filter

 %%%

 % current position -- known location
refPos = [WS_PosOld(1) WS_PosOld(2)];
refECEF = tgdecef(refPos(1),refPos(2),WS_PosOld(3))';

Appendix 9 – Matlab Code for Picking the Best Four Satellites, Finding Their Positions, and
Finding their Atmospheric Errors

 % get satellites for first fix -- from obs file
 tobs = Time
 II = find(TOW==tobs);
 II = II(1:4);
 numsats = 4;
 sats = PRN(II); % sats observed
 SV_MPR = C1(II); % L1 pseudoranges

 fig_text = 'C/A on L1';
 % loop through each satellite and calculate the satellite position and
 % then the range to the satellite from the current position
 numsats = 4;
 svECEF = zeros(numsats,3);
 R = zeros(numsats,1);
 elev = R;
 az = R;
 icorr = R;
 tcorr = R;
 ucbias = 0;
 svcc = R;

 for n=1:numsats
 % need to calculate time of transmission based on current time and
 % distance
 time_tr = tobs - (Pr(n) - ucbias + svcc(n))/c_speed;
 % need to match up the right row of epem data
 if (find(satnum == sats(n)))

 r = find(satnum==sats(n) & edata(:,1)==teph);

 % sat position
 svpos = svpeph(time_tr,edata(r,:));

 % adjustment of measurements
 toe = edata(r,1);
 smaxis = edata(r,2);
 ecc = edata(r,3);
 af(1) = edata(r,17);
 af(2) = edata(r,18);
 af(3) = edata(r,19);
 grpd = edata(r,20);
 svcc(n) = svclockc(time_tr,toe,smaxis,ecc,af);
 Pr(n) = Pr(n) + svcc(n) - grpd;

 % adjustment of satellite position due to earth rotation effect
 theta = rot_rate*(Pr(n)/c_speed);
 temp1 = cos(theta);
 temp2 = sin(theta);
 svECEF(n,1) = svpos(1)*temp1 + svpos(2)*temp2;
 svECEF(n,2) = -svpos(1)*temp2 + svpos(2)*temp1;
 svECEF(n,3) = svpos(3);

 [SV_Elev(n) SV_Az(n) ulos, SV_PPR(n)]= elevaz(refECEF,svECEF(n,:));
 icorr(n) =
ionoc(deg2rad(refPos(1)),deg2rad(refPos(2)),SV_Elev(n),SV_Az(n),tobs,alpha,beta);
 tcorr(n) =
tropoc1(deg2rad(refPos(1)),deg2rad(refPos(2)),WS_PosOld(3),SV_Elev(n),tgeoid84);

 end % of if statement
 end % of for loop

