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Abstract 
Several powerful agencies, including the US Department of Transportation, the UK 
Ministry of Shipping, and the Office of the President of the United States have identified 
an increasingly high level of dependence on the Global Positioning System (GPS).  Also, 
they have become aware of definite vulnerabilities to GPS; in light of these two findings, 
they have called upon the engineering community to develop a backup to GPS.  This 
paper is a report on a navigation systems integration project sponsored by the Federal 
Aviation Administration and the Department of Homeland Security.  The goal of the 
project is to use Kalman filtering to integrate GPS, Long Range Navigation (LORAN), 
and Inertial navigation.  The report includes overall system designs for tightly coupled 
systems and loosely coupled systems and an analysis of each.  Also discussed are local 
space to world space conversions and the Euler angles associated with that process.  We 
constructed a complete dynamics conversion algorithm which produces the navigational 
features of an Inertial Navigation System using the inputs from an Inertial Measurement 
Unit.  We reproduced the entire GPS algorithm in Matlab and we wrote all the Matlab 
code to form a tightly coupled system which Kalman integrates GPS, an IMU and, a 
magnetic compass. 

Introduction 

Background 
GPS is increasingly relied upon for timing and positioning information; as each new civil 
system becomes dependent on GPS, the potential devastation caused by a GPS jamming 
attempt increases.  The Volpe Report on GPS Vulnerability states: 

 
“As GPS further penetrates into civil infrastructure, it becomes a tempting target 
that could be exploited by individuals, groups or countries hostile to the United 
States.  The potential for denying GPS service by jamming exists.  The potential 
for inducing a GPS receiver to produce misleading information exists.” 
 

Clearly, there is need for a system capable of withstanding GPS outages.  There are 
currently three primary electronic navigation systems available to the maritime 
community: GPS, long range navigation (LORAN), and inertial navigation systems 
(INS).  Due to its accuracy and inexpensive receivers, GPS has become the primary, and 
in most cases, the only navigation system on seagoing vessels.  It is not prudent to rely 
solely on one navigation system when it has known vulnerabilities.  No single system is 
adequate as a stand alone; there is need for an integrated electronic navigation system. 
 
GPS is very effective in that it is relatively accurate: 13 meters horizontally and 22 
meters vertically (95% of the time) (United, 3-6); however, it is vulnerable to both 
intentional and unintentional jamming as well as blockages by buildings or large ships.  
GPS consists of a constellation of 24 satellites in six orbital planes (United, 3-4).  They 
are in circular orbit at roughly 20,200 km above Earth.  GPS is more vulnerable than 
LORAN because of the distance between the receiver and the antennae, and the 
frequency of the signal.  GPS operates on two L-band frequencies: 1227.6 MHz and 
1575.42 MHz; this is in contrast to LORAN which operates in the 90-110 KHz band.  
The signals are traveling all the way from the satellites’ orbits, and they are far weaker 



 

(higher frequency) signals to begin with.  It is much easier for them be either blocked by 
a large object, or jammed by a small, inexpensive antenna.  The power contained in a 
GPS signal is far less than the power contained in a LORAN signal, so the power of a 
signal needed to jam GPS signal is far less then that of LORAN.  Also, the low frequency 
LORAN signal requires a very large antenna (several hundred feet long) for jamming.  
GPS was developed by the Air Force, and it came on line in 1995 (United, 3-5). 

The LORAN system is a network of land based antennas; similar to GPS, LORAN 
operates on times of arrival of signals from broadcast antennae.  The major difference is 
that those antennae are welded in place on Earth, not orbiting in space.  The system 
suffers from lesser accuracy than GPS because the speed of a signal traveling close to 
land is not as predictable as the speed of a signal traveling through space and atmosphere.  
For purposes of position finding, it is assumed that the signals always travel over water; 
however they often travel over land as well.  The system is accurate to ¼ nautical mile, 
but is highly repeatable (18-90 meters) and much more difficult to jam than GPS (United, 
3-22).  LORAN’s shortcoming is its relative inaccuracy; ¼ mile does not meet the harbor 
Entrance and Approach requirements of 8-20 meters. 

The third system, INS, is a navigation system that relies on sensors that observe the effect 
of Newton’s laws of motion.  There are typically six sensors: three gyroscopes and three 
accelerometers; gyroscopes observe rates of rotation about an axis, and accelerometers 
observe acceleration along an axis.  There is one pair of sensors for each axis so that all 
aspects of motion can be observed (Jekeli, 9).  It is not a feasible standalone system 
because, while it can produce position estimates indefinitely, each subsequent fix without 
an external correction is less accurate. This is due to the stability problems associated 
with numerical integration.  The accelerations must be double integrated.  It is a very 
precise system and can be used for finite periods of time, as shown by the US Naval 
submarine fleet; they do not have access to GPS or LORAN while underwater.  An 
inertial measurement unit (IMU) is a bundle of acceleration and rotation sensors which 
provides raw acceleration and rate data; the INS is an IMU with the processing necessary 
to create a three dimensional fix.  After extensive research into the IMU’s on the market, 
we decided to procure the IMU400CC from Crossbow Technologies, Inc. 

Kalman Basics 

 
Figure 1-  The two steps to a Kalman Filter 



 

A Kalman Filter is used in this project to integrate systems.  The Kalman filter was 
originally conceived in a paper written by R.E. Kalman in 1960; it is a minimum mean 
squared estimate that operates in real time; it provides the optimal estimate given certain 
assumptions of independence, system linearity, etc.  It uses a two step process to 
approximate a best available solution based on several different inputs (i.e. IMU, GPS, 
LORAN) (Brown, 214).  The two steps, shown in figure 1, are the prediction step and the 
observation step.   

Proposed Integrated Receiver 
We are proposing the construction of an integrated electronic navigation unit that utilizes 
GPS, LORAN and an INS.  The system will implement a Kalman filter in either a loosely 
or tightly coupled arrangement, and will provide fix information based on some form of 
inputs from all three systems.  The Kalman filter will provide feedback to the three input 
systems for increased data quality.  This integrated receiver will fulfill the need described 
above for a system with greater data integrity and the ability to ‘coast’ through brief GPS 
outages.   

Objectives 
The goal of this project is to develop a Kalman filter that will effectively integrate the 
LORAN system, GPS system, and an INS into a navigation system that captures the best 
characteristics of each individual system.  This system will have the able to maintain 
stable navigation during outages of individual systems.  This undertaking is divided into 
six more sizable targets:  

I. Investigating the ‘flavor’ of integration (tightly or loosely coupled), 
II. IMU; collect, comprehend, manipulate, and analyze IMU data, 

III. GPS; learn GPS algorithm, comprehend and analyze all forms of GPS data, 
IV. Kalman integrate IMU and GPS, 
V. LORAN; learn LORAN algorithm, comprehend and analyze all forms of 

LORAN data 
VI. Kalman integrating all three systems 

 
Our objectives are divided in this fashion so that we can make progress one step at a 
time.  Kalman integration of the IMU and GPS is a smaller undertaking then the full 
integration of all three systems.  This target is important because it will be a more basic 
first step.  It will allow us to become familiar with Kalman filtering, and it will shed light 
on how our ultimate goal of integrating all three systems can be reached. 
 
There are three flavors of system integration in use today: uncoupled, loosely coupled, 
and tightly coupled (Greenspan, 191).  We know that we want a system with some 
feedback from the Kalman filter, but we do not know the degree of ‘coupling’ that is 
appropriate.  Uncoupled and loosely coupled both involve the GPS and the IMU 
producing a full three dimensional fix and feeding that into the integration processor 
(Kalman filter in our case).  The principle difference between the two is that with a 
loosely coupled system there is aiding and error state feedback directed from the 
integration processor to the GPS and IMU so that the fix provided by the IMU does not 
suffer from the instability described in the Introduction section.  We began this project 
with the expectation that we would not utilize the uncoupled method because while it is 



 

the fastest, and easiest, we believe that the IMU would be of very limited utility without 
an error state feedback to keep the IMU’s position from becoming inaccurate.  The 
difference between the remaining systems: tightly and loosely coupled systems, is that in 
a tightly coupled system instead of a full three dimensional fix feeding into the 
integration processor from the IMU and GPS, there are raw accelerations and 
pseudoranges respectively.  Our first undertaking (target I) is to investigate tightly and 
loosely coupled systems and decide which one we will pursue. 
 
The IMU, GPS, and LORAN (targets II, III, and V) analyses are an important aspect of 
this project because in order to implement a Kalman filter the designer of the filter must 
be very familiar with the stochastics of the data provided by each system in use.  There is 
a conversion from the raw data provided by the IMU to a three dimensional fix; this 
necessitates a firm understanding of the data provided by the IMU and what 
transformations it needs to go through to become a three dimensional position.  Also, the 
tightly coupled system will require the use of raw GPS and LORAN data, which will 
make it absolutely essential to understand all the intricacies of the GPS and LORAN 
algorithms so that raw pseudoranges and times of arrival can be utilized.  
 
  

Technical System Description  

IMU Description 

 

 
Figure 2 – Crossbow IMU. 

The IMU400CC that is being used in this project was purchased because its wide range 
of functionality and simple interface seemed most feasible for seagoing assets operating 
on current budget requirements.  This particular unit, shown in figure 2, utilizes micro 
electro mechanical systems (MEMS) technology.  MEMS technology has not only 
significantly reduced the size of many complex electronic systems (in this case 
accelerometers and gyros) but also their cost.  It was the advent of MEMS technology 
that made it financially feasible for a standard surface shipboard navigation system to 
utilize an IMU.  The IMU 400CC has two modes of operation: polled and continuous.  
The unit can be set to continually produce data at a rate of about 130 Hz, or it can 



 

respond with a data packet only when prompted.  It uses RS232 communications to 
digitally deliver packets of 18, 8-bit unsigned integers.  The first integer is a header, 
which will always be all ones; the last is a checksum, which helps ensure proper 
transmission has occurred.  The remaining 16, 8-bit integers are converted to 8, 16-bit 
signed integers.  These 8 integers are than multiplied by various coefficients and become 
six accelerations/rates plus temperature and time. The unit has an internal clock that 
provides the time signature for each packet (Crossbow, 16).  The IMU essentially 
operates on inertia.  It senses changes in both linear and angular motion and reports them.  
Our unit reports linear accelerations along its axes and angular rates about its axes.  All 
three axes each then have two elements which are constantly monitored.  This yields six 
degrees of freedom and six outputs from the unit at all times.  The configuration is 
depicted in figure 3.  All of the data is reported with respect to the unit’s local coordinate 
system (Jekeli, 8).  We call this coordinate system ‘local space,’ and much of our loosely 
coupled algorithm is devoted to referencing data from local space to east north up (ENU) 
coordinate system, or ‘world space.’  Another important consideration is the unit’s 
inherent gravity bias.  Along the vertical world space axis, there is a constant 1G of 
acceleration that is observed by the unit.  The G is the unit of acceleration equivalent to 
the acceleration due to gravity on Earths surface.  It is equivalent to 9.80665 meters per 
second squared.  The acceleration due to gravity must be taken into consideration at all 
times to prevent erroneous data.  The IMU400CC is the most financially sound system 
available with the necessary features.  The Matlab code that we use to extract data from 
the IMU400CC is available in appendix 1. 
 
 

 
Figure 3 – IMU Local Space  Axes Orientation and Rates/Accelerations. 

 
GPS Description 

For the tightly coupled system, it is crucial to have a comprehensive fundamental 
understanding the processing a GPS receiver performs to arrive at a three dimensional 
fix.  There are three major pieces of data that are downloaded by the receiver from the 
GPS satellites: observations, almanac data, and ephemeras data.  Observations are 
constantly downloaded and contain the pseudorange data on all available satellites.  A 



 

pseudorange is the distance between the antennae and the satellite given that the clock on 
the receiver is not perfectly aligned with the clock on the satellite.  Because of clock drift, 
the clocks are not aligned, and this is accounted for by the pseudorange.  A pseudorange 
differs from an actual range in accordance with the difference between the satellite’s 
clock and the receiver’s clock.  This time difference (called the user clock bias) 
multiplied by the speed of the electromagnetic wave, 3x108m/s, yields the difference in 
meters between a range and a pseudorange.  Ephemera and almanacs are encoded within 
the observation data stream, and they are available every ten to fifteen minutes.  The 
almanac is a set of time variant data points that mathematically depict a rough idea of the 
location of a satellite, which can be used to determine elevation angle or azimuth angle.  
This is allows for calculation of ionospheric and tropospheric errors, masking certain 
angles for greater accuracy, and aligning the antennae for improved reception.  The 
ephemeras provides similar information to the almanac, with more precision; it is what is 
used to find the exact location of a satellite for purpose of calculating a fix.  Both the 
ephemeras and almanac operate on the basis of time of week; a time of week is applied 
and an earth-centered earth fixed (ECEF) three-dimensional fix is obtained.   

 

 
Figure 4 – ECEF Coordinat System 

ECEF, shown in figure 4, is the coordinate system typically used to describe satellite 
location; the center of Earth is the origin.  The Z axis is along the line drawn between 
Earth’s north and south poles, the X axis is along the line protruding out of the point 
where the prime meridian and equator meet, and the Y axis forms right angles with the X 
and Z axis.   
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Figure 5 – GPS Algorithm Block Diagram. 

 

The process by which raw antennae data (ephemera and observations) are translated into 
a position is shown in figure 5; the Matlab code that we developed to perform this is 
available in appendix 7.  For more details on the GPS position algorithm, see Misra 
Pratap’s text.  The two major sections of this process are the satellite location finding and 
the antennae position finding. 

 

Satellite Location Finding – Satellite location finding begins with a time of week, which 
represents the time that the signal was received by the antennae.  This time is not the 
actual time that the signal was released from the satellite, so we have to take into effect 
the time of propagation, which is subtracted from the time of reception.  Time of 
propagation is based on the pseudorange, assuming that the signal traveled at the speed of 
light.  This time of release is then used in conjunction with the ephemeris to produce an 
ECEF location for the satellite.  

 

Antennae Position Finding - The observations are embodied in the ‘Measure GPS PRs’ 
block, which is where the pseudoranges are extracted.  The measured pseudoranges have 
their ionospheric and tropospheric corrections applied and then they are sent to the 
position finding function.  The ionospheric and tropospheric corrections are there to 
mitigate the delay caused by the ionosphere and troposphere; the degree to which the 



 

signals are affected by these atmospheric layers is based on the elevation angle of the 
satellite.   

 

The position finding function evaluates position based on at least four pseudoranges and 
four respective satellite positions.  One pseudorange/satellite location pair proves that the 
antenna is on a certain sphere around the satellite, two pairs prove that the antennae is on 
a circle (the intersection of two spheres), three pairs prove that you are in a certain 
location.  The forth pair is necessary for determining the clock bias.  As discussed earlier, 
the clock in the GPS receiver is not going to be exactly aligned with the clocks in the 
satellites, and this difference is referred to as the clock bias.  Each pair form a line of 
position; when calculating the intersection of these four lines of position a precise three 
dimensional location and the clock bias can be determined.  There are four unknowns (3 
dimension of ECEF and user clock bias) and four equations (the four pairs). 

 
When implementing this algorithm, and subsequent GPS algorithms, in Matlab we 
utilized the Matlab GPS toolbox.  The version we needed was not yet available, but we 
had access to the beta version, which we modified and used extensively. 

 

Kalman Filtering 

Tightly vs Loosely Coupled System – Our initial decision was to investigate a loosely 
coupled system.  This system would take a three dimensional fix from the IMU, a three 
dimensional fix from the GPS, and a two dimensional fix from LORAN.  The Kalman 
filter would use known data about each of these systems and produce an optimal three 
dimensional fix.  The block diagram that describes this process is in figure 6.  We put 
together the dynamics conversion algorithm (discussed later in this section) and 
discovered that it was not as effective as we had hoped, so we reevaluated where we 
wanted to take the project.  We decided that we could either feed a lot of corrections back 
to the dynamics conversion in an attempt to stabilize it; or we could change direction and 
construct a tightly coupled system. 

 



 

 
Figure 6 – Loosely Coupled System Design 

There were several difficulties, discussed in the Dynamics Conversion Algorithm section 
which made the loosely coupled system somewhat infeasible.  A tightly coupled system 
needs a much less complex Dynamics Conversion Algorithm, and after our difficulties 
we decided to change direction towards tight coupling.  Some of the advantages of the 
tightly coupled system (aside from the absence of the Dynamics Conversion) are the 
ability to operate on more limited navigational data sources.  With a tightly coupled 
system we do not need four line of sight satellites available to draw on that information.  
We do not need all four LORAN towers available either; we can draw on any 
combination of GPS and LORAN source and use them in conjunction with our IMU.  
Presumably there will always be the 6 degrees of freedom available from the IMU.   In 
R.L. Greanspan’s paper regarding coupling, he concludes that tight coupling provides the 
greatest performance at the expense of greater complexity.  We decided that the benefits 
of tight coupling outweigh the costs, so we designed the tightly coupled system. 

 

Loosely Coupled Design  - In this configuration, the GPS and LORAN receivers will 
each produce a fix, and we will only process that full fix.  The IMU, on the other hand, 
does not produce a full fix; it produces the raw accelerations and rates.  The majority of 
our work in this configuration is then encompassed in the Dynamics Conversion section, 
where we describe how we manipulate raw data into a three dimensional fix. 

 

Dynamics Conversion Algorithm - The dynamics conversion proved to be a complex 
aspect of the system.  We implemented it in code, and it is available in appendix 2.  There 
are three major objectives of this algorithm:  

 Local Space to World Space Transformation 

 Gravity Cancellation 



 

 Integration 

 

 
Figure 7 – Dynamics Conversion Algorithm 

 

Local Space to World Space Transformation - The Dynamics Conversion Algorithm is 
shown in full in figure 7.  The Find_New function in the algorithm houses the awareness 
of the difference between local space and world space, and the vector transformation 
algorithm.  Find_New is available in appendix 4.  On each iteration this function takes 
the amounts of rotation about each axis that have occurred during that iteration (Theta) 
and uses those to update the world space local space awareness; this awareness is 
accomplished with a rotation matrix.  The three by three rotation matrix is originally 
calculated using the Euler Angles described by Christopher Jekeli.  Each axis has its own 
three by three matrix (Rx, Ry, and Rz) composed of sine and cosine calculations of the 
degree of rotation about that particular axis.  All three are then multiplied together to 
arrive at the complete rotation matrix.  The rotation matrix is depicted in figure 6 as 
New_Rot for the current iteration and Present_Rot for the previous iteration. 
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Given Present_Rot, New_Rot can be determined by simply multiplying the R matrices by 
Present_Rot where the R matrices represent changes in rotation about their respected 
axes.  If New_Rot and Present_Rot are aligned perfectly, the product Rx,*Ry*Rz will be a 
three by three identity matrix. 

 

tPresent_RoRzRyRxNew_Rot ∗∗∗=  

 

A vector of accelerations along the axes is transferred from local space to world space 
(also in the Find_New function) in a similar fashion.  The vector of accelerations is 
shown as A in figure 7; A is transformed from world space to local space by multiplying 
it by the most up to date rotation matrix (New_Rot) 

 

 LocalSpace WorldSpace A New_Rot A ∗=  

 

Gravity Cancellation – Once the accelerations are in world space, we simply remove a 
full Gravity of acceleration.  This is after the vector has been converted from units of 
Gravity to meters per second squared (1G = 9.80665 m/s2) 

 

 9.806651] 0 [0-A  A  WorldSpaceWorldSpace ∗=  

 

Numerical Integration - The two styles of integration that we investigated were 
rectangular and trapezoidal integration.  Rectangular integration in discrete time is 
commonly referred to as accumulation, and it is essentially a summation of all values 
scaled by the frequency at which the data was calculated.   
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or in a post processing environment 
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where T is the period of each iteration.  Trapezoidal integration, instead of adding the 
current value, adds the average of the previous value and the current value.  This has the 
effect of adding a trapezoid to the summation, rather than a rectangle. 

 

2
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for post processing with this form, we use the filter command in Matlab with this transfer 
function: 
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(this is the transfer function for double integration, performed on accelerations; single 
integration is the positive square root of this) 

 

We tested both of these methods, and found them to be similar.  However, a slightly more 
stable system resulted when using trapezoidal integration.  Though it was more stable, we 
still had some significant gain problems arise from both methods of double integration. 

 



 

Figure 8 – Pole Zero plot of Trapezoidal Integration 

 

Figure 8 shows the pole zero plot of trapezoidal integration.  There are two poles at Z = 1, 
which equates to infinite gain given a DC (0 radians / second) input signal.  Any bias in 
the signal is a DC component, which will produce a quadratic output over time.   
 

 
Figure 9 – Sample Data set from the IMU 

 

A 900 second sample of data directly from the IMU is shown in figure 9; the only 
processing that has occurred is the conversion from G’s to meters per second squared.  It 
is obvious that there is some bias in the signal, and we saw the effects of that bias in the 
displacement, it was quadratic in every case.  Something we worked extensively with was 
how to remove that bias from the signal to get more reasonable data.  In post processing 
this wasn’t difficult as we could just subtract off the mean; however this is not a feasible 
solution since we need a real time solution.  Other attempts at removing the bias included 
calculating the mean over a 1000 sample set and subtracting off that value from 
subsequent data, high pass filtering the signal, and low pass filtering the signal.  The most 
successful attempt was the subtracting of the mean; however, even acceleration data with 
the 1000 sample set mean removed still produced unstable displacement data after the 
100th sample. 



 

 

 
Figure 10 – Double Trapezoidal Integration of figure 9 

The result of a double trapezoidal integration performed on the data shown in figure 9 is 
shown in figure 10.  Better results were produced when we subtracted off a 1000 sample 
mean, and when we high pass filtered the data; however, even that data was exponential 
when double integrated and was not usable.  The Matlab code that we developed perform 
both rectangular and trapezoidal integration is available in appendix 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Tightly Coupled Design – 

 
Figure 11 – Tightly Coupled System Design 

Figure 11 describes the algorithm that we decided on for our tightly coupled system.  The 
system operates on one second iterations and is based on GPS pseudoranges, IMU 
readings, and a magnetic compass.  It is designed to meet target IV of the objectives: 
Kalman integrate IMU and GPS. 

 

The IMU, in conjunction with the previous fix, produces the reference trajectory.  This is 
the estimated position for time K.  It is the position at time K-1 with the velocity for the 
time difference between K and K-1 (1 second) added to it.  SystemPosition is shown in 
figure 11 as Lat(k), Lon(k), and Alt(k); these are the three dimensional world space 
positions of the user.  Velocity E,N,U is the average velocity, along each axis, that the 
IMU has calculated over the previous second.  Given that the iteration time is one second, 
it can simply be added to the previous system position to provide an updated estimated 
system position.   

 

SystemPosition(k) = SystemPosition(k-1) + VelocityENU 

 



 

IMUProcess has a variation on the Dynamics Conversion Algorithm, which translates the 
6 degrees of freedom into world space velocity.  This includes a single trapezoidal 
integration of linear accelerations and the world space local space awareness necessary to 
convert between local space and world space. 

 

This updated SystemPosition is then used to calculate pseudoranges using the reverse of 
the GPS algorithm depicted in figure 5.  Instead of calculating a position based on 
pseudoranges, we calculate pseudoranges based on position.  These pseudoranges have to 
have the same ionospheric and tropospheric errors calculated and applied to them to 
make them as close as possible to the measured pseudoranges.  This is so that any 
difference in the calculated and measured pseudoranges is representative of an error in 
the reference trajectory.  The satellite positions have to be calculated in the same manner 
as before, and those are used in conjunction with the reference trajectory to make the 
predicted pseudoranges.  The predicted pseudoranges are fed into the Kalman Filter.   

 

A similar process occurs with the magnetic heading.  IMUProcess keeps track of the 
world space local space awareness, and one component of that is the units rotation about 
the vertical axis.  This rotation can be correlated to the units magnetic heading; 
IMUProcess produces an estimated magnetic heading, which is compared with the actual 
magnetic heading.  This error is also fed into the Kalman Filter. 

 

The Kalman Filter runs on those two inputs and returns its estimate on how far off the 
reference trajectory was.  That estimate is applied to the reference trajectory to find the 
final SystemPosition(k).  The Kalman Filter also provides some feedback to the 
IMUProcess to keep the integration from spinning out of control and to keep the 
estimated magnetic heading in check. 

 

 
Kalman Equations - As discussed in the introduction, the Kalman Filter moves in a two 
step process: prediction and measurement.  There is a fundamental recursive Kalman 
equation for each of these steps; these equations essentially encompass the filter.  The 
process equation propagates forward from the current state to the next state.  It models 
the random process that we are estimating, in this case the world space location of the 
receiver.  The second equation is the measurement equation; it is a linear relationship that 
models the relationship between the measurements and the states. 
 
Measurement equation: 

 

kkkk vxHZ +=   
 
Process equation: 

 

kkkk wxx +=+ ϕ1  



 

 
where: kx  - (n by 1) state vector at time tk 

 kϕ  - (n by n) matrix relating kx  to 1+kx  
 kw  - (n by 1) vector; a white sequence with known covariance structure, Qk 
 kz  - (m by 1) measurement vector at time tk 

kH  - (m by n) matrix giving the ideal connection between the 
measurement and state vector 

kv  - (m by 1) vector of measurement error with known covariance structure, Rk 

 
Kalman Matrices - Our implementation of the Kalman filter is what is referred to as 
extended.  This means that the states that we are estimating are not states of the system 
(i.e. position along world space north axis, ships heading etc) but rather the errors in 
those states.  Recall 11, the tightly coupled design.  The Kalman filter has errors as both 
inputs and outputs, and never has any awareness of actual states.  This characteristic 
makes our filter an extended Kalman filter. 
 
The following are the measurement and process equations specific to this project. 
 
Measurement equation: 
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Process equation: 
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where: nα = Azimuth of satellite n 
 nγ = Elevation angle of satellite n 
 e∆  = The displacement error on the world space East axis 
 e&∆  = The velocity error on the world space East Axis  
 eφ  = Platform tilt about the East Axis 
  
note: replace e  and East with n ,u, and North, Up respectively 
 
Kalman Loop - The loop that we have implemented is a standard, well documented loop.  
The proof behind it is available in Patrick Hwang’s book, and this section will discuss his 
version of the loop; it is shown in figure 12. 
 

 

Compute Kalman gain: 
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Figure 12- Standard Kalman Filter loop from Brown and Hwang 
 

The ‘update estimate with measurement’ frame is where the new state estimates (error 
estimates in our case) are created.  The state matrix is updated by a combination of the 
measurements and the prediction.  The weighting of this calculation is based on the 
Kalman gain, Kk, and is divided between the measurement and the prediction.  A high 
Kalman gain puts weight on the measurements, zk; a low Kalman gain puts weight on the 
prediction, which is the product of the state transition matrix, Hk, and the current state kx . 
 
The error covariance, kP , is calculated in the ‘compute error covariance for updated 
estimate’ frame.  The error covariance is an [n X n] matrix representing the amount of 
error in each state.  It is calculated using the inverse of the error covariance matrix, the 
Kalman gain, and the state transition matrix. 
 
The next step, embodied in the ‘project ahead’ frame, is for the states and the error 
covariances to propagate forward to the next time instance.  They do so in accordance 
with ϕ k, the difference being that the noise covariance, Kk, is added to the error 
covariance to accurately model the actual noise in the system. 
 
The following step is to compute the updated Kalman gain.   This is done using the error 
covariance matrix, the state transition matrix, and the measurement error covariance 
structure.  The Kalman filter is an adaptive filter; the key players that adapt within the 
filter are the states and the error covariance.  Other aspects of the filter change with 
respect to external variables; for instance, the state transition matrix changes as the 
satellite locations (azimuth and elevation angles) change. 

 
 

Initial Results – Loosely Coupled System  
 
Performance of Dynamics Conversion Algorithm 
The Dynamics Conversion Algorithm suffered from the effects of integration.  For the 
purposes of testing our modifications to the algorithm and for testing all of the filtering, 
we put together a real time debugging utility.  The utility keeps track of the algorithm’s 
understanding of the location and orientation of the unit.   



 

 
 

Figure 13 – Screen Shot of the Real Time Graphical Debugging Utility 

Figure 13 shows the graphical debugging utility.  The multicolored cube is representative 
of the IMU; that is, it is the local space and the background axes are the world space. The 
code for the debugging utility is available in appendices 5 and 6. 
 
As discussed in the Numerical Integration section, we attempted removing a 
precalculated mean, high pass filtering, and low pass filtering.  All of these attempts were 
conducted in the above debugging utility, and none were found to be successful.  The 
local space cube would invariably drift off the screen, even in the absence of motion.  For 
this reason, we discontinued work on our loosely coupled system and began to look into 
the tightly coupled system. 
 
Another issue that we encountered with the loosely coupled system was the phenomenon 
of gravity leakage.  Minor imperfections in the local space world space awareness lead to 
gravity leaking into the other axes.  As it is subtracted off of the accelerations, if the 
rotation matrix used to convert the accelerations is not exactly right, the gravity is 
inaccurately subtracted off of axes where it never was in the first place.  This hampered 
our efforts and further encouraged us to pursue a tightly coupled system. 
 



 

 

Current Results – Tightly Coupled System  
Status of Code 
We wrote all of the code in the tightly coupled design of figure 11; however, not all of it 
works together.  The code is available in appendices 8 and 9.  The Kalman Filter was 
written in different phases than the rest of the code, and it hasn’t been fully integrated 
into the system yet.  Because of this it is still undecided if our algorithm is a feasible 
solution, or if many changes will have to be made. 
 
GPS 
When we decided to pursue the tightly coupled system, we knew that we would need a 
fundamental understanding of the GPS algorithm.  We were able to utilize the algorithm 
in figure 5 to arrive at relatively accurate fixes.  We began by downloading observation 
and ephemeris data from the Moriches GPS station.  

Figure 13 – Calculated Moriches Position from Raw GPS Data 

 
When we ran that Moriches data through the algorithm in figure 5, we produced the 
results shown in figure 13.  Our fix is relatively accurate for an unaided (no differential or 
WAAS correction) GPS fix. 
 



 

 Figure 14 – Calculated Local Position from Raw GPS Data 

 
When we ran our own data through the algorithm in figure 5, we produced the position 
error shown in figure 14.  Our fix shows an interesting phenomenon regarding ephemeris 
data.  A fault in our data recording utility caused us to only have access to the ephemeris 
released closest to the end of capture time.  We captured data for several hours, and so 
much of our earlier data was used with an ephemeris that wasn’t going to be accurate for 
several hours.  Granted, the ephemeras accounts for time, many of the more intricate 
aspects of the calculation change with time and are only accurate for a short duration.  In 
figure 14, the axes are in meters where (0,0) is the actual location of the antennae.  The 
blue plot is with ionospheric and tropospheric corrections and the green is without.  In 
terms of time, the most inaccurate points (most distant from (0,0)) are earliest, and as 
time drew on and the ephemera that were being used became more and more accurate, the 
position becomes much better. 

 

Conclusions/Future Direction: 
In terms or our original objectives, we met the first three targets.  We gained a 
fundamental understanding of inertial navigation and the global positioning, and we 



 

thoroughly investigated tight and loose coupling with a Kalman filter.  We came close to 
reaching our fourth target of Kalman integrating a GPS and LORAN.  In addition to the 
knowledge I gained about GPS and INS, I also learned the fundamentals of designing and 
implementing Kalman integrated system.   
 
This project has promise to become an effective navigation system, and it should be 
continued.  The next step will be to finish and test the tightly coupled system and 
eventually build a tightly coupled system with GPS, LORAN, and INS in accordance 
with the originally stated objectives. 
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Appendix 1 – Matlab Code to Extract data from IMU400CC 
 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  Function: CCData                                                
%  Purpose: Pulls desired number of samples off of the IMU         
%  Parameters: Num - Number of samples to be taken                   
%              S - IMU Device/COMS handler                         
%  Returns: Roll - A vector of angular velocity about the X axis   
%               in degrees per second                           
%             Pitch - A vector of angular velocity about the Y axis  
%                     in degrees per second                          
%             Yaw - A vector of angular velocity about the Z axis    
%                   in degrees per second                            
%             XX - A vector of linear acceleration in the X          
%                  direction in G's                                  
%             Y - A vector of linear acceleration in the Y           
%                  direction in G's                                   
%             Z - A vector of linear acceleration in the Z           
%                  direction in G's                                  
%             Time - A badly aliased vector of the devices time      
%                    counts associted with each acceleration value   
%             Temp - The units temperature in degrees C              
%             Freq - Frequncy of data packet collection              
%                                                                  
%  Author: 1/C Hunter T. Atherton                                  
%                                                                  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function [Roll,Pitch,Yaw,XX,Y,Z] = CCData(Num,s);    
%function [Roll,Pitch,Yaw,XX,Y,Z,Time,Temp,Freq,X] = CCData(Num,s);     
 
 
flushinput(s)         % Clear input buffer 
tic                   % Start timer (for Frequency calculation) 
 
Cnt = 1;              % Start counter for the while loop 
 
while(Cnt <= Num)     % Fill each vector with data until the required 
                      % number of samples have been collected 
 
fprintf(s,'G') ;       % Request a data packet 
X =fread(s,18,'uint8');    % Pull the first byte off of the input buffer  
                           % (always should be unsigned 8 bit integer 255) 
 
if (X(1) ~= 255)       % If the first byte was not correct return 
    ClearInput 
    disp('Input Mismatch, rerun the function') 



 

    return 
end 
 
Roll(Cnt) = 256*X(2)+X(3);   % Convert the two bytes into the required data 
 if (Roll(Cnt) > 32767)       % Adjust for two's complement 
     Roll(Cnt) = Roll(Cnt) - 65536;  
 end 
Roll(Cnt) = Roll(Cnt)*.00457763671875;  % Apply the manufacturer's correction 
 
Pitch(Cnt) = 256*X(4)+X(5); 
 if (Pitch(Cnt) > 32767)  
     Pitch(Cnt) = Pitch(Cnt) - 65536; 
 end 
Pitch(Cnt) = Pitch(Cnt)*.00457763671875; 
 
Yaw(Cnt) = 256*X(6)+X(7); 
 if (Yaw(Cnt) > 32767)  
     Yaw(Cnt) = Yaw(Cnt) - 65536; 
 end 
Yaw(Cnt) = Yaw(Cnt)*.00457763671875; 
 
XX(Cnt) = 256*X(8) + X(9); 
 if (XX(Cnt) > 32767)  
     XX(Cnt) = XX(Cnt) - 65536; 
 end 
XX(Cnt) = XX(Cnt)*.000091552734375; 
 
Y(Cnt) = 256*X(10) + X(11); 
 if (Y(Cnt) > 32767)  
     Y(Cnt) = Y(Cnt) - 65536; 
 end 
 Y(Cnt) = Y(Cnt)*.000091552734375; 
 
Z(Cnt) = 256*X(12)+X(13); 
 if (Z(Cnt) > 32767)  
     Z(Cnt) = Z(Cnt) - 65536; 
 end 
 Z(Cnt) = Z(Cnt)*.000091552734375; 
 
 Temp(Cnt) = bin2dec([dec2bin(X(14),8),dec2bin(X(15),8)]); 
  
 Temp(Cnt) =((Temp(Cnt)*5/4096)-1.375)*44.44; 
  
 Time(Cnt) = bin2dec([dec2bin(X(16),8),dec2bin(X(17),8)]); 
  
 if (mod(sum(X(2:17)),256) - X(18) ~= 0) 
     disp('ERROR: summation') 
     return 



 

 end  
 
Cnt=Cnt+1; 
 
end 



 

Appendix 2 – Matlab Code to Perform Dynamics Data Conversion 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  m-file:  FullRun                                                
%  Purpose:  Gets data off the IMU, removes the gravity             
%             acceleration, appropriately integrates the data, and   
%             keeps track of its position relative to the            
%             coordinate axes                                        
%                                                                  
%  Author: 1/C Hunter T. Atherton                                  
%                                                                  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Declare initial state & create blank data structures 
 
%load ThousandStillSamplesAcc 
%load FourNineteen 
%  
% X_Accold = X_Acc; 
% Y_Accold = Y_Acc; 
% Z_Accold = Z_Acc; 
% XRateold = XRate; 
% YRateold = YRate; 
% ZRateold = ZRate; 
%  
 
%clear XCoord YCoord ZCoord VelocityX VelocityY VelocityZ XAngle YAngle ZAngle XRate 
YRate ZRate X_Acc Y_Acc Z_Acc 
 
Theta = [0; 180; 90]; 
 
[New_Tran, New_Rot] = Find_New([0;0;0], Theta, [0;0;0], [1 0 0; 0 1 0; 0 0 1]) 
 
                                     % Rotational matrix describes the angular 
                                     % relationship between local and world 
                                     % space.  The unit is initialized to 
                                     % this orientation because it's 
                                     % positive Z axis points down while 
                                     % our defined world space positive Z axis 
                                     % points up. 
                                      
                        % New_Tran Vector describes the linear 
                        % relationship between local and world 
                        % space 
 
LocalDisp = [0; 0; 0;]; % Holds the linear displacement data 
                        % in between integrate() and findnew() 
 



 

Theta = [0; 0; 0;];     % Holds the angular displacement data  
                        % in between integrate() and findnew() 
 
%Freq = 9;               % Initialize the frequency for the first 
                        % integration 
 
Freq = 9.9266;                           
                         
OldA = 0;               % Trapezoidal integration requires that 
OldW = 0;               % the previous acceleration, velocity, 
OldVelocity = 0;        % and angular rates; they are all 
                        % 0 initially. 
                         
XAngle(1) = 0; 
YAngle(1) = 0; 
ZAngle(1) = 0; 
%[bias_wx, bias_wy, bias_wz, bias_x, bias_y , bias_z] = CallibrateMan(100,s) 
                     
 
%Initialize data members and variables for the real time plot 
%and start up the plot 
 cubesize=.5; 
 a=cubesize*[-1 1 -1 1;1 -1 -1 1;1 -1 -1 1;-1 1 -1 1]; % a 4x4 
 b=cubesize*[-1 1 1 -1;-1 1 -1 1;-1 1 -1 1;-1 1 1 -1]; % b 4x4 
 c=cubesize*[1 1 1 1;1 1 1 1;-1 -1 -1 -1;-1 -1 -1 -1]; % c 4x4 
 
% 3D_Plot start up 
 figure(1); 
 cube_plot_3D(a,b,c,[0;0;0],New_Rot,1,Freq); 
 pause(.0001); 
 
% figure(2) 
% plot(New_Tran(1), New_Tran(2), 'r'); 
% X = [0 0  0 -10 -20 -30 -40]; 
% Y = [0 10 20 20 20 20 20]; 
% hold on; 
% plot(X, Y, 'g'); 
% title('Overhead View'); 
% xlabel('X axis'); 
% ylabel('Y axis'); 
% Legend('Me�asured','Reality'); 
 
% pause(.0001);   
 
 
 
FreqVect = [0];          % Vector holds frequencies of each iteration 
 



 

Num = 1;                 % Number of data samples to get from CCData 
 
for i = 1:60, 
 
    tic                            % start the frequency timer  
    Present_Rot =  New_Rot;        % rotate the rotational variable assignments 
    Present_Tran = New_Tran;       % rotate the linear variale assignments 
     
    [w_x,w_y,w_z,aa_x,aa_y,aa_z] = CCData(Num,s);  % Pull in the data from the Unit 
 
%             w_x = XRateold(i);  
%             w_y = YRateold(i); 
%             w_z = ZRateold(i); 
%             aa_x = X_Accold(i); 
%             aa_y = Y_Accold(i); 
%             aa_z = Z_Accold(i); 
%      
     
    w_x = w_x - bias_wx; 
    w_y = w_y - bias_wy; 
    w_z = w_z - bias_wz; 
    aa_x = aa_x - bias_x; 
    aa_y = aa_y - bias_y; 
    aa_z = aa_z - bias_z; 
 
     
       
    %Convert from G's to m/s/s 
   aa_x=aa_x*-9.80665;        % The negative multiplier realigns the axes so  
   aa_y=aa_y*-9.80665;        % that a positive acceleration value represents the unit 
   aa_z=aa_z*-9.80665;        % accelerating along that axis in it's positive direction  
  %                             as opposed to its negative direction. 
   w_x = -w_x; 
   w_y = -w_y; 
   w_z = -w_z; 
                                
                                
                                
    % Fill initial data vectors 
    W = [w_x; w_y; w_z];         % vertical matrix of angular rotation 
    AA = [aa_x; aa_y; aa_z];     % vertical matrix of linear acceleration 
         
 
    Theta = num_int_trap(0, OldW, W, Freq); 
    OldW = W; 
      
    % Integrate changes angular rate (W) and linear acceleration (A) into a 
    % local displacement vector (LocalDisp) and change in rotation (Theta) 



 

    
    Theta = Theta*pi/180;   % degrees to radiuns correction 
 
    % Create the matrices for changing local displacements into world 
    % displacements 
    R1 = [1 0 0; 0 cos(Theta(1)) sin(Theta(1)); 0 -sin(Theta(1)) cos(Theta(1))]; 
 
    R2 = [cos(Theta(2)) 0 -sin(Theta(2)); 0 1 0; sin(Theta(2)) 0 cos(Theta(2))]; 
 
    R3 = [cos(Theta(3)) sin(Theta(3)) 0; -sin(Theta(3)) cos(Theta(3)) 0; 0 0 1]; 
 
    % Create the change rotation matrix 
    Change_Rot = R3*R2*R1; 
 
    %Change the rotation 
    New_Rot = Change_Rot*Present_Rot; 
     
%     while (i < 90) 
%     Theta = [0; 0; i]; 
%     end 
%      
%     while ((i > 90) && (1 >270)) 
%     Theta = [0; i-90; Theta(3)]; 
%     end  
     
    %[New_Tran, New_Rot] = Find_New([0;0;0], Theta, [0;0;0], Present_Rot) 
     
    A = New_Rot*AA - [0;0;1]*9.80665; 
      
    % Integrate 
    Velocity = num_int_trap(OldVelocity, OldA, A, Freq); 
    LocalDisp = num_int_trap(0, OldVelocity, Velocity, Freq); 
    OldA = A;     
    OldVelocity = Velocity; 
 
    % Calc_New_Data 
    New_Tran = LocalDisp + Present_Tran; 
     
    % Find distance from origen (New_Tran) and rotation relative to 
    % coordinate axes (New_Rot) 
 
    %    % 3D_Plot 
 
     
    cube_plot_3D(a,b,c,New_Tran ,New_Rot,i,Freq); 
 
    %plot(New_Tran(1), New_Tran(2), 'r'); 
         



 

    % Realtime Graphical Debugging utility.   
    % Should be commented out when not in use   
    pause(.0001);   
 
 
 
     
    % Create a vector of distance from the origin along the 3 axes 
    % Should be commented out when not in use 
    XCoord(i) = New_Tran(1); 
    YCoord(i) = New_Tran(2); 
    ZCoord(i) = New_Tran(3); 
     
    % Create a vector of angular rotation about the 3 axes 
    % Should be commented out when not in use   
    XAngle(i+1) = Theta(1)+XAngle(i); 
    YAngle(i+1) = Theta(2)+YAngle(i); 
    ZAngle(i+1) = Theta(3)+ZAngle(i);     
 
    % Create vectors of angular rate about the 3 axes 
    % Should be commented out when not in use 
    XRate(i) = w_x; 
    YRate(i) = w_y; 
    ZRate(i) = w_z;  
     
    X_Acc(i) = aa_x; 
    Y_Acc(i) = aa_y; 
    Z_Acc(i) = aa_z; 
     
    VelocityX(i) = Velocity(1); 
    VelocityY(i) = Velocity(2); 
    VelocityZ(i) = Velocity(3); 
 
    % Frequency calculation 
    t(i) = toc; 
    Freq=1/t(i); 
    FreqVect(i) = Freq; 
     
   %FinalData = [XCoord' YCoord' ZCoord' VelocityX' VelocityY' VelocityZ' XAngle(2:i+1)' 
YAngle(2:i+1)' ZAngle(2:i+1)' XRate' YRate' ZRate' X_Acc' Y_Acc' Z_Acc']; 
 
   %save NeweData FinalData; 
     
end 
% figure(1) 
% plot(XCoord) 
% figure(2) 
% plot(YCoord) 



 

% figure(3) 
% plot(ZCoord) 
%  
% mean(FreqVect) 
 
%ShowOldData(-1,0) 



 

Appendix 3 – Matlab Code to Perform Trapezoidal Integration 
(Note the commented section for performing rectangular integration) 

 
function [y_n]=num_int_trap(y_n_1, x_n, x_n_1, freq); 
% function [y_n]=num_int_trap(y_n_1,x_n,x_n_1,freq); 
%  
% This function employs the trapezoid rule in the numerical intergration 
% of a discrete signal. 
 
y_n=y_n_1+(x_n+x_n_1)/2/freq;  % trapazoid rule 
 
%y_n = x_n_1*(1/freq) + y_n_1; % rectangular rule 



 

Appendix 4 – Matlab Code to Perform Local Space to World Space Conversion 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  Function:  Find_New()                                           
%  Purpose:    Creates updated displacement vectors for rotation      
%              and acceleration                                                  
%                                                                  
%  Parameters: Local_Disp - Gravity corrected linear             
%                        displacement column vector - Local    
%                         Space                                   
%                Theta - Angular displacement column vector         
%                                                                  
%                                                                  
%  Authors:  1/C Hunter T. Atherton 

LT Teixeira                                                 
 
%                                                                  
%                                                                  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
function [New_Tran, New_Rot] = Find_New(Local_Disp, Theta, Present_Tran, Present_Rot) 
 
Theta = Theta*pi/180;   % degrees to radiuns correction 
 
 
% Create the matrices for changing local displacements into world 
% displacements 
R1 = [1 0 0; 0 cos(Theta(1)) sin(Theta(1)); 0 -sin(Theta(1)) cos(Theta(1))]; 
 
R2 = [cos(Theta(2)) 0 -sin(Theta(2)); 0 1 0; sin(Theta(2)) 0 cos(Theta(2))]; 
 
R3 = [cos(Theta(3)) sin(Theta(3)) 0; -sin(Theta(3)) cos(Theta(3)) 0; 0 0 1]; 
 
% Create the change rotation matrix 
Change_Rot = R3*R2*R1; 
 
%Change the rotation 
New_Rot = Change_Rot*Present_Rot; 
 
%Change the translation, based on the new rotation 
New_Tran = Present_Tran + New_Rot'*Local_Disp; 
 
% New_Tran and New_Rot are in world space 



 

Appendix 5 – Matlab Code to Run the Real Time Debugging Utility 
 
 
function []=cube_plot_3D(a,b,c,vector_disp,matrix_rotate,i,Freq); 
%  Function Name:  cube_plot_3D.m 
%  Author:  LT Michael Teixeira 
%  Last updated:  18 Nov 04 
% 
%  This function plots the 3D movement of a cube.  The inputs to the 
%  function are as follows: 
%  vector_disp = the position of the cube relative to some world origin. 
%  vector_disp is a 3x1 vector with the xyz displacement values as its 
%  entries in meters. 
%  matrix_rotate = the rotation matrix of the cube relative to some world 
%  fixed axis system.  matrix_rotatate is a 3x3 matrix with no units. 
% 
%  The output is a 3D plot of a cube with the given displacement and 
%  rotation as specified by the inputs. 
% 
%  Note:  This function requires the use of the "rotate_cube()" function 
%  and they must be in the same working directory. 
 
 
%  Set the size of the cube with the cubesize variable.  Note:  cubesize times 2 is the side 
%  length of the cube.   
 
% cubesize=1.5; 
 
 
% matrices a,b,c are 4x4 matrices that indicate line segments to form a 
% cube in 3D space.  The cube is 2x2x2 and is centered at the world space 
% origin.  a,b,c are scaled by cubesize to generate an accurate cube size. 
 
%a=cubesize*[-1 1 -1 1;1 -1 -1 1;1 -1 -1 1;-1 1 -1 1]; % a 4x4 
%b=cubesize*[-1 1 1 -1;-1 1 -1 1;-1 1 -1 1;-1 1 1 -1]; % b 4x4 
%c=cubesize*[1 1 1 1;1 1 1 1;-1 -1 -1 -1;-1 -1 -1 -1]; % c 4x4 
 
 
%  This function rotate the a,b,c cube matrices by the new rotation matrix, 
%  matrix_rotate.  This function must be in the same work directory. 
 
[d,e,f]=rotate_cube(a,b,c,matrix_rotate); 
 
matrix_rotate; 
 
% world_x,y,z is a matrix combination that indicates the current position 
% and rotation of the line segments that form the cube. 
 



 

world_x=vector_disp(1)*ones(4,4) + d; 
world_y=vector_disp(2)*ones(4,4) + e; 
world_z=vector_disp(3)*ones(4,4) + f; 
 
 
% h=plot3() function generates a 3D plot of the abc cube in world space and 
% creates a handle vector h that contains the graphics handles for the 
% cube.  The axis size is set with the L variable (in meters). 
 
h=plot3(world_x,world_y,world_z); 
L=3; 
axis(L*[-1 1 -1 1 -1 1]); 
grid 
xlabel('X-axis  (meters)'); 
ylabel('Y-axis  (meters)'); 
zlabel('Z-axis  (meters)'); 
title('Dynamics Algorithm Debugging Tool'); 
S1=['Sample Number: ' num2str(i)]; 
text(-L,L,1.5*L,S1); 
S2=['Time (sec): ' num2str(i/Freq)]; 
text(0.5*L,-L,1.6*L,S2); 
 
 
%  Use hold on command to leave a trail of the past cube positions. 
 
%  hold on 
 



 

Appendix 6 – Matlab Code to Rotate the Cube within cube_plot_3D (Appendix 5) 
 
 
function [d,e,f]=rotate_cube(a,b,c,rot); 
%  Function Name:  [d,e,f]=rotate_cube(a,b,c,rot); 
%  Author:  Michael Teixeira 
%  Last updated: 18 Nov 04 
% 
%  This function rotates a set of matrices representing a cube in 3D space about 
%  the origin according to the input rotation matrix. 
% 
%  The inputs are as follows: 
%  a,b,c are 4x4 line segment matrices that indicate the vertices of a 3D 
%  cube. 
%  rot is the rotation matrix that indicates the new orientation of the 
%  cube. 
%  The outputs are as follows: 
%  d,e,f are 4x4 line segment matrices that indicate the new vertices of 
%  the 3D cube after the specified rotation. 
% 
%  Note:  This function is normally called by the cube_plot_3D() function.  
 
d=zeros(4,4); 
e=zeros(4,4); 
f=zeros(4,4); 
 
for i=1:4, 
    for j=1:4, 
        gg=rot*[a(i,j) ; b(i,j) ; c(i,j)]; 
        d(i,j)=gg(1); 
        e(i,j)=gg(2); 
        f(i,j)=gg(3); 
    end 
end 



 

Appendix 7 – Matlab Code for Calculating a GPS Fix from Local Data Without Analysis 
 
 

 
%%   GPS Test 
% 
%   Gregory Johnson 
%   JJMA, March 2005 
 
 
%   convert RINEX files to Matlab 
%   xrinexn for .0Xn files 
%   xrinexo for .0Xo files 
 
%   Modified: April 2005 by 1/C Atherton 
%   Action: Addition of data prefiltering for use with local dat 
%           Removal of end data analysis 
%           Rename to GPStestmodd 
 
clear all 
 
% load constants 
wgs84con 
%   ionospheric corrections set constants 
ionocon %   stores in global variable alpha and beta 
%   tropospheric correction constants 
load tgeoid84.dat 
 
%   current position -- known location 
refPos = [41+22.348/60 -(72+5.987/60)]; 
refECEF = tgdecef(deg2rad(refPos(1)),deg2rad(refPos(2)),-24.116)'; 
 
%   load the ephemeris -- this is the Eph file created by xrinexn 
D = textread('Nov_PseudoIII.eph',''); 
 
NumEphems = length(D(:,1)); 
MaxLength = 0; 
p = 1; 
while p < NumEphems 
    Toe = D(p,2); 
    SameToe = find(D(:,2)==Toe); 
    if MaxLength < length(SameToe) 
        MaxLength = length(SameToe); 
        NewEphem = SameToe; 
    end 
    p = p + length(SameToe); 
end 
 



 

D = D(NewEphem,:); 
 
 
satnum = D(:,1); 
edata = D(:,2:21); 
 
%   sat number then 20 fields of edata 
%            edata(1)  - input, toe, reference time ephemeris, in seconds 
%             edata(2)  - input, smaxis (a), semi-major axis, in meters 
%             edata(3)  - input, ecc (e), satellite eccentricity 
%             edata(4)  - input, izero (I_0), inclination angle at reference time, 
%                         in radians 
%             edata(5)  - input, razero (OMEGA_0), right ascension at reference 
%                         time, in radians (longitude of ascending node of orbit 
%                         plane at weekly epoch) 
%             edata(6)  - input, argper (omega), argument of perigee, in radians 
%             edata(7)  - input, mzero (M_0), mean anomaly at reference time, in 
%                         radians 
%             edata(8)  - input, radot (OMEGA_DOT), rate of right ascension, in 
%                         radians/second 
%             edata(9)  - input, deln (delta_n), mean motion difference from 
%                         computed value, in radians/second 
%             edata(10) - input, idot (I_DOT), rate of inclination angle, in 
%                         radians/second 
%             edata(11) - input, cic, amplitude of the cosine harmonic 
%                         correction term to the angle of inclination, in radians 
%             edata(12) - input, cis, amplitude of the sine harmonic correction 
%                         term to the angle of inclination, in radians 
%             edata(13) - input, crc, amplitude of the cosine harmonic correction 
%                         term to the orbit radius, in meters 
%             edata(14) - input, crs, amplitude of the sine harmonic correction 
%                         term to the orbit radius, in meters 
%             edata(15) - input, cuc, amplitude of the cosine harmonic correction 
%                         term to the argument of latitude, in radians 
%             edata(16) - input, cus, amplitude of the sine harmonic correction 
%                         term to the argument of latitude, in radians 
%             edata(17) - input, af0, satellite clock bias, in seconds 
%             edata(18) - input, af1, satellite clock drift, in seconds/seconds 
%             edata(19) - input, af2, satellite clock drift rate, in seconds/seconds**2 
%             edata(20) - input, tgd, time group delay, in seconds 
 
 
 
%   load the observations - this is Obs file created by xrinexo 
D = textread('Nov_PseudoIII.obs',''); 
%   first col is Time of Week, 2nd is PRN, 3rd thru end is data based on 
%   header 
 



 

NewPRN = 0; 
for z = 1:length(D(:,1)) 
    if (find(D(z,2) == satnum)) 
        NewPRN = [NewPRN z]; 
    end 
end 
NewPRN = NewPRN(2:end); 
D = D(NewPRN,:); 
 
 
 
TOW = D(:,1); 
PRN = D(:,2); 
C1 = D(:,3); 
 
 
%%  want to loop through each set of data -- based on TOW 
 
maxrow = length(TOW(1:20000)) 
r_index = 1; 
s_index = 1; 
FixNum = 1; 
elev = zeros(40,1000); 
ditched = elev; 
 
 
while r_index<(maxrow) 
 
    %   find right time of ephemeris -- use the last ephemeris before the 
    %   current TOW 
     
    tobs = TOW(r_index); 
 
    teph = edata(1,1); 
 
    %   get satellites for first fix -- from obs file 
    II = find(TOW==tobs); 
    sats = PRN(II); %   sats observed 
    Pr = C1(II);    %   c/a L1 pseudoranges 
 
    fig_text = 'C/A on L1'; 
    %   loop through each satellite and calculate the satellite position and 
    %   then the range to the satellite from the current position 
    numsats = length(sats); 
    svECEF = zeros(1,3); 
    R = zeros(numsats,1); 
    az = R; 
    icorr = R; 



 

    tcorr = R; 
    ucbias = 0; 
    svcc = R; 
    n = 1; 
     
     
    while (n <= numsats) 
         
        %   need to calculate time of transmission based on current time and 
        %   distance 
        time_tr = tobs - (Pr(n) - ucbias + svcc(n))/c_speed;     % where did c_speed come from???? 
        %   need to match up the right row of epem data 
        r = find(satnum==sats(n) & edata(:,1)==teph); 
     
        %   sat position 
        svpos = svpeph(time_tr,edata(r,:)); 
 
        % adjustment of measurements 
        toe = edata(r,1); 
        smaxis = edata(r,2); 
        ecc = edata(r,3); 
        af(1) = edata(r,17); 
        af(2) = edata(r,18); 
        af(3) = edata(r,19); 
        grpd = edata(r,20); 
        svcc(n) = svclockc(time_tr,toe,smaxis,ecc,af); 
        Pr(n) = Pr(n) + svcc(n) - grpd; 
 
        % adjustment of satellite position due to earth rotation effect 
        theta = rot_rate*(Pr(n)/c_speed); 
        temp1 = cos(theta); 
        temp2 = sin(theta); 
        svpos1(1) = svpos(1)*temp1 + svpos(2)*temp2; 
        svpos1(2) = -svpos(1)*temp2 + svpos(2)*temp1; 
        svpos1(3) = svpos(3); 
                 
        [elev(n) az(n) ulos(n,:) R(n)] = elevaz(refECEF,svpos1); 
        icorr(n) = ionoc(deg2rad(refPos(1)),deg2rad(refPos(2)),elev(n),az(n),tobs,alpha,beta); 
        tcorr(n) = tropoc1(deg2rad(refPos(1)),deg2rad(refPos(2)),-24.116,elev(n),tgeoid84); 
         
        elev1(sats(n),FixNum) = rad2deg(elev(n)); % find elevation angles 
               
       if (elev1(sats(n),FixNum) > 10) 
            svECEF(n,1) = svpos(1)*temp1 + svpos(2)*temp2; 
            svECEF(n,2) = -svpos(1)*temp2 + svpos(2)*temp1; 
            svECEF(n,3) = svpos(3); 
        else  
            ditched(sats(n),FixNum) = 1; 



 

            sats(n); 
            numsats = numsats - 1; 
            Pr = Pr(find(PRN(II)~=sats(n))); 
            n = n - 1; 
        end 
         
        n = n + 1; 
         
    end % of for loop 
 
    % calculate position solution  
     
    [upos] = uposit(svECEF,Pr,[0;0;0],5); 
    [lat(FixNum) lon(FixNum) alt(FixNum)] = tecefgd(upos); 
     
    [upos1] = uposit(svECEF,Pr-icorr-tcorr,[0;0;0],5); 
    [lat1(FixNum) lon1(FixNum) alt1(FixNum)] = tecefgd(upos1); 
     
    satuseds(s_index) = numsats; 
    user_time(s_index) = tobs; 
     
    % update indexes 
    r_index =  r_index + numsats; 
    s_index = s_index+1; 
    FixNum = FixNum + 1; 
     
end % of while loop 
 
%  Stats & Plots 
%  Determine position error statistics 
 
RefLat = refPos(1)*1852*60; 
RefLon = refPos(2)*cos(refPos(1))*1852*60; 
 
latt = rad2deg(lat)*1852*60 - RefLat; 
lonn = rad2deg(lon)*cos(refPos(1))*1852*60 - RefLon; 
 
lattt = rad2deg(lat1)*1852*60 - RefLat; 
lonnn = rad2deg(lon1)*cos(refPos(1))*1852*60 - RefLon; 
 
figure(1) 
plot(lonn,latt,'*g') 
axis([-30 30 -30 30]) 
grid 
hold on 
plot(lonnn,lattt,'*b') 
plot(0,0,'*r')  



 

Appendix 8 – Matlab Code to Perform Tightly Coupled Integration 
(Prior to Addition of Kalman Filter) 

 
 

%GPS SETUPS 
rinexo('Nov_PseudoIII.05o'); 
rinexn('Nov_PseudoIII.05n'); 
 
%   current position -- known location 
refPos = [41+22.348/60 -(72+5.987/60)]; 
refECEF = tgdecef(deg2rad(refPos(1)),deg2rad(refPos(2)),-24.116)'; 
 
D = textread('Nov_PseudoIII.eph',''); 
 
NumEphems = length(D(:,1)); 
MaxLength = 0; 
p = 1; 
while p < NumEphems 
    Toe = D(p,2); 
    SameToe = find(D(:,2)==Toe); 
    if MaxLength < length(SameToe) 
        MaxLength = length(SameToe); 
        NewEphem = SameToe; 
    end 
    p = p + length(SameToe); 
end 
 
D = D(NewEphem,:); 
 
satnum = D(:,1); 
edata = D(:,2:21); 
%   sat number then 20 fields of edata 
 
%   load the observations - this is Obs file created by xrinexo 
D = textread('Nov_PseudoIII.obs',''); 
%   first col is Time of Week, 2nd is PRN, 3rd thru end is data based on 
%   header 
 
NewPRN = 0; 
 
for z = 1:length(D(:,1)) 
    if (find(D(z,2) == satnum)) 
        NewPRN = [NewPRN z]; 
    end 
end 
 
NewPRN = NewPRN(2:end); 
D = D(NewPRN,:); 



 

TOW = D(:,1); 
PRN = D(:,2); 
C1 = D(:,3); 
 
 
 
% MagComp setups 
% INPUT THE MAGNETIC COMPASS READINGS FOR ONE SECOND INTERVALS WITH 
THE 
% VECTOR FOR HEADING: Heading 
 
 
 
%%  NOT SURE HOW TO INITIALIZE THESE 
%IMU Setups 
Compass = 0;  %initial heading in degrees tru 
Attitude = [180; 0; 90] 
FreqIMU = 130; 
Attitude = Attitude + Rates; 
R1 = [1 0 0; 0 cos(Attitude(1)) sin(Attitude(1)); 0 -sin(Attitude(1)) cos(Attitude(1))]; 
R2 = [cos(Attitude(2)) 0 -sin(Attitude(2)); 0 1 0; sin(Attitude(2)) 0 cos(Attitude(2))]; 
R3 = [cos(Attitude(3)) sin(Attitude(3)) 0; -sin(Attitude(3)) cos(Attitude(3)) 0; 0 0 -1]; 
Rotation = eye(3)*eye(3)*R3; 
 
 
 
 
%GLOBAL SETUPS 
WS_VelErrors = [0; 0; 0]; 
WS_Velocity = [0; 0; 0]; 
WS_PosOld = [0; 0; 0]; 
 
 
 
 
 
%LOOP BEGINS 
for Time = TOW(1):NumSamples    
    [Attitude, Rotation, WS_Velocity] = IMUProcess(Attitude, Rotation, Time, WS_Velocity, 
WS_VelErrors, AttErrors); 
    WS_EstPos = WS_PosOld + WS_Velocity; 
    GetSVpos; 
    SV_PPR = SV_PR + icorr + tcorr; 
    PRErrors = SV_PPR - SV_MPR; 
    MagError = Attitude(3)-Heading(Time - TOW(1); 
     
    %%% 
    % Kalman Filter 



 

    %%%    
     
     
     
     
    %   current position -- known location 
refPos = [WS_PosOld(1) WS_PosOld(2)]; 
refECEF = tgdecef(refPos(1),refPos(2),WS_PosOld(3))'; 



 

Appendix 9 – Matlab Code for Picking the Best Four Satellites, Finding Their Positions, and 
Finding their Atmospheric Errors 

 
 
    %   get satellites for first fix -- from obs file 
    tobs = Time 
    II = find(TOW==tobs); 
    II = II(1:4); 
    numsats = 4; 
    sats = PRN(II);  %   sats observed 
    SV_MPR = C1(II);     %   L1 pseudoranges 
 
    fig_text = 'C/A on L1'; 
    %   loop through each satellite and calculate the satellite position and 
    %   then the range to the satellite from the current position 
    numsats = 4; 
    svECEF = zeros(numsats,3); 
    R = zeros(numsats,1); 
    elev = R; 
    az = R; 
    icorr = R; 
    tcorr = R; 
    ucbias = 0; 
    svcc = R; 
 
    for n=1:numsats 
        %   need to calculate time of transmission based on current time and 
        %   distance 
        time_tr = tobs - (Pr(n) - ucbias + svcc(n))/c_speed;      
        %   need to match up the right row of epem data 
        if (find(satnum == sats(n))) 
             
            r = find(satnum==sats(n) & edata(:,1)==teph); 
         
            %   sat position 
            svpos = svpeph(time_tr,edata(r,:)); 
     
            % adjustment of measurements 
            toe = edata(r,1); 
            smaxis = edata(r,2); 
            ecc = edata(r,3); 
            af(1) = edata(r,17); 
            af(2) = edata(r,18); 
            af(3) = edata(r,19); 
            grpd = edata(r,20); 
            svcc(n) = svclockc(time_tr,toe,smaxis,ecc,af); 
            Pr(n) = Pr(n) + svcc(n) - grpd; 
     



 

            % adjustment of satellite position due to earth rotation effect 
            theta = rot_rate*(Pr(n)/c_speed); 
            temp1 = cos(theta); 
            temp2 = sin(theta); 
            svECEF(n,1) = svpos(1)*temp1 + svpos(2)*temp2; 
            svECEF(n,2) = -svpos(1)*temp2 + svpos(2)*temp1; 
            svECEF(n,3) = svpos(3); 
     
            [SV_Elev(n) SV_Az(n) ulos, SV_PPR(n)]= elevaz(refECEF,svECEF(n,:)); 
            icorr(n) = 
ionoc(deg2rad(refPos(1)),deg2rad(refPos(2)),SV_Elev(n),SV_Az(n),tobs,alpha,beta); 
            tcorr(n) = 
tropoc1(deg2rad(refPos(1)),deg2rad(refPos(2)),WS_PosOld(3),SV_Elev(n),tgeoid84); 
             
 
        end % of if statement         
    end % of for loop 
     


