

International Ice Patrol
UUppggrraaddee ooff TThheerrmmooggrraapphhiicc DDaattaa RReeccoorrddiinngg SSooffttwwaarree

1/C Steven Myers and 1/C Jeff Chonko

Project Advisors: Professor Holland and LT Staier

Projects in Electrical & Computer Engineering
United States Coast Guard Academy

May 2003

1

International Ice Patrol
UUppggrraaddee ooff TThheerrmmooggrraapphhiicc DDaattaa RReeccoorrddiinngg SSooffttwwaarree

1/C Steven Myers and 1/C Jeff Chonko

Project Advisors: Professor Holland and LT Staier

Projects in Electrical & Computer Engineering

United States Coast Guard Academy
May 2003

ABSTRACT
This project will upgrade data recording software used
by the International Ice Patrol (IIP). Our advisors are
Professor Holland and LT Staier. The International Ice
Patrol uses a computer program to record information
about the temperature of the North Atlantic Ocean.
This computer program is currently inadequate and is
not user-friendly. The project design team will make
various improvements to this software in order to better
suit the International Ice Patrols needs. At this phase of
the development process, the graphical user interface
(GUI) is available, the BITE and Status functions have
been implemented and tested, and code of several of the
function modules of the program have been written.

INTRODUCTION
The International Ice Patrol is a unit of the U.S. Coast
Guard that tracks and reports on icebergs near the
Grand Banks of Newfoundland using a HC-130 (Figure
1). Information about these icebergs is published to
mariners who may be sailing through the Grand Banks
region. [1]

Figure 1 HC-130 on an Ice Patrol Flight

To help gather this data, a crewmember periodically
deploys an Air deployed eXpendable Bathy-
Thermograph (AXBT) buoy at various locations in the
ice field. These buoys record temperature at various
depths. This data is transmitted to one of three
receivers onboard the aircraft. It is then processed on a
laptop computer connected to the receivers and stored
for later analysis.

The software currently in use on the laptop is not user-
friendly. The current software allows the user to
observe the data as it is being transmitted or save the
data without viewing it, but not both. This leaves the
aircrews with no way to determine if the data is useful
until after it has been saved.

OBJECTIVE
The goals of this project include making the interface
user-friendly and providing more functionality to the
program. Most of the changes that the IIP proposed to
us deal with the user-interface and the operation of the
program. One of the alterations that this project will
undertake is to modify the software so that the program
will be able to monitor and save data simultaneously
from all three buoys. Borland C++Builder™ is the tool
that is going to be used to make the proposed changes.

We have been successful in provided many documents
that will aid future cadets to fully understand the project
and its content. These documents include the
requirements specification, project plan, project papers,
as well as our course notebooks. Also, we have
provided numerous function modules in Borland
C++Builder™.

However, we have encountered some resource
constraints with regards to having a lab test bed as well
as the hardware in order to test the software for

2

accuracy and completeness. One of the objectives was
to modify the software so that it will monitor and save
on all three receivers. This objective was not met due
to both time constraints as well as resource constraints.

Overall, our project work for the past two semesters
will lay a strong foundation for future work and
hopefully completion of this project in its entirety next
year. This is in large part because all of the
administrative work has been down and a large part of
the coding has already been completed. The major
portion of the work lies in finishing the coding of a few
more function modules, and testing the overall program
for correctness.

SYSTEM DESIGN
System specifications were the result of a dialogue
between the International Ice Patrol and us. Since the
Ice Patrol is the customer and they will be using our
product, their input into the system requirements was
valuable. Their two main requirements were a system
that is user-friendly and allowed them to monitor and
record data simultaneously. This system would be a
resemblance of their current system to provide
familiarity, but the system would also have new and
improved features.

Prototype
Their requirements led us to creating a graphical user
interface (GUI) type system. This would allow the user
to easily interact with the program. The new system
would do away with redundancy confirmation, which
was a problem with the original system. Redundancy
confirmation is whenever you click yes to perform and
operation and then a pop-up would appear asking if you
were sure that you wanted to perform that operation.
This was not very user-friendly especially in the type of
environment this software was being used in. The
International Ice Patrol operates out of a HC-130 in the
North Atlantic Ocean in the middle of the winter
season. The bay door on the aircraft is left open so that
they can throw the buoys into the ocean. It gets very
cold on their patrols, and they want a software package
that they can operate with their gloves on. This means
that they want a product that has minimal key press
operations.

Hardware Capabilities
Simultaneous monitoring and recording of data is a
function that did not depend on the program, but rather
the hardware that would be connected to the computer.
Research needed to be done to determine the
capabilities of the hardware. The hardware would need
to transmit three receivers. It would also need to

transmit information as it received it instead of just
sending it all after it was completed receiving. The
ability of the hardware to perform simultaneous output
and input was an aspect of the project that has not been
determined due to time constraints.

Legacy Code
In order to write the new code, we had to research
Visual Basic. This is a programming language that the
designers were not familiar with and since the old
program was written in Visual Basic it was useful to
learn the language.

With knowledge of Visual Basic, we were able to
formulate an idea of the operation of the old system.
We had to go through each operation and function to
determine what each one does. This allowed us to
convert the multiple operations into C++ code.

Testing
Testing the program involves both lab testing and field-
testing the software. A simulation of the buoy
transmitting system will need to be set up to allow
testing of the software in a lab environment. Once all
the glitches are out and the program works, field-testing
the software is the next step. An exact replica of the
equipment on the aircraft will be set up with the only
difference being the software on the computer. This
will allow the new and old software to be tested
simultaneously. This will show how it reacts to the
different environment as well as the operator. The
operator of the testing software is a valuable
commodity to the project. The operator on the HC-130
will be able to give immediate feedback on what they
like or do not like regarding the program.

Final Deliverables
The final objectives involve modifying the software
with regard to any changes that occurred as per field-
testing. Also, produce a field manual that details how
the program works. Finally, train the crewmembers
that are going to be using the software on its operation.

RESULTS
We have accomplished many tasks so far in our project.
These tasks include writing a requirement specification,
writing a project plan, and designing an initial
prototype of the software. Furthermore, we have
attended classes in order to learn Borland C++™ GUI
programming so that we could implement it in our
software.

3

Requirements Specification
The requirements specification, Appendix 1, is a very
important document to complete because it outlines the
criteria to be followed when writing the software. It
had to be updated several times in order to meet all the
customer’s needs. This was a guidepost that we used to
model the software.

Project Plan
The project plan, Appendix 2, was the next paper that
was completed. This helped us outline our schedule of
objectives, and put down on paper what the actual plan
for the project was going to be. This allowed us to
formulate a detailed schedule, which we could use to
model our progress.

Initial Prototype
The third task that was completed was the initial
prototype of the software. This prototype is the basic
user-interface of the program. It contains a main form
that has all of the buttons on it from the previous
program. It also contains different windows that are
displayed when the buttons are pressed. Although it
does not perform any operations at this time, it is a
complete graphical representation of what the customer
can expect. Initial prototype forms are shown in figure
2.

Figure 2 Initial prototype forms

Implemented Functions
We have written several functions for the program. We
have completed and tested the Status and BITE tests.
Code has been written for various other functions, but
we were unable to test them due to hardware
availability. The following paragraphs show the results
from the Status and BITE tests.

Status Test
The Status test is the first test that is performed by the
crewmember when the program is opened. This test
checks all parts of the hardware and makes sure that
they are communicating correctly with the computer.

From the main window (Figure 3) the crewmember
pushes the status button.

Figure 3 Main window

The status window appears and the Status test begins
(Figure 4).

Figure 4 Status test

If the test is successful, a message of “GOOD” will
appear in all of the edit boxes (Figure 5).

Figure 5 Good Status test

4

However, if there is an error in the status test, the
program will timeout and a communications error
window will popup (Figure 6). This lets the
crewmember know that the hardware is not
communicating with the computer correctly.

Figure 6 Communications error

Once the crewmember acknowledges the popup box by
pushing the ok button or hitting the return key, the
message “ERROR” will appear in all of the edit boxes
(Figure 7). This indicates that there is something wrong
with the communication with the hardware and the
computer.

Figure 7 Status error form

There was one part of the Status test that we could not
get to work. We were unable to write code to test to see
if the individual parts of the hardware had errors
associated with them. The source code only tests the
communication as a whole, and sends back an error
state if the hardware is not powered up or not hooked
into the box properly. We were not able to figure out
how it checks each individual component of the
hardware.

BITE Test
The Built-in-test-equipment (BITE) test transmits a
precise baseband signal on a predetermined VHF
frequency. This frequency channel is utilized to test all
three receiver/processor modules.

From the main window in figure 3, the crewmember
pushes the BITE button on the left panel. The BITE
window will appear (Figure 8) and start the BITE test.

Figure 8 BITE test

If the user wants to cancel the BITE test for whatever
reason they can push the abort BITE button on the
window. This will stop the test and give the user a
command to reset all the buffers on the hardware
(Figure 9)

Figure 9 BITE abort

If there are any discrepancies in either RF reception or
baseband analysis, the communication error popup
window will appear notifying the user of a problem
(Figure 10).

5

Figure 10 BITE error

We were not able to get the BITE test to give good
results after testing. We ran into some complications in
the testing phase. We were unable to figure out where
the information was being stored on the buffer for the
BITE test. Further research into the BITE
communications will allow future cadets to get the right
information off of the buffer and process it, which can
then be displayed for the user

CONCLUSIONS
This year has allowed us to learn how to manage a
project and gather all the required information that is
needed in order to complete it. Also, we have learned
that it is important to communicate with everyone that
is involved with the project. Communication is a key
part of projects success. Talking to the project advisors
on a more regular basis would have helped us to
understand what they wanted and could have cut down
on some of our time management issues.

In the spring semester, we began working on reading
and understanding the existing code and started to
formulate the source code in C++. Once that was
complete, we briefly started to test the software. We
had some resource constraints that did not allow us to
have the amount of time that was needed to test the
software, so that hindered our overall testing process.
We continued to write code base off our analysis of the
existing software as well as the feedback that we
formulated from testing. As a wrap up to the year, we
will conclude the semester by writing a final paper,
presenting our accomplishments to the IIP, and
gathering all the necessary information in order to aid
future cadets succeed and finish this project.

ACKNOWLEDGEMENTS
Steven Myers and Jeffery Chonko wishes to
acknowledge the contributions of Professor Holland,
LT Staier, and ETC Coker.

REFERENCES
[1] International Ice Patrol Website
 http://www.uscg.mil/lantarea/iip/home.html
[2] Borland C++ Compiler Website
 http://www.borland.com/cbuilder/
[3] Miano, John, Cabanski, Tom, and Howe Harold.

Borland C++Builder™, HOW-TO, The Definitive
C++ Problem Solver. Waite Group Press, 1997.

[4] Sahni, Sartaj. 1998. Data Structures, Algorithms,
 and Applications in C++, WCB McGraw-Hill.

APPENDICES
[1] Requirements Specification
[2] Project Plan
[3] ARPS AXBT System Trace Reading and Message
Generation
[4] AXBT Rigging and Equipment Procedures
[5] AXBT Portable Receiver/Processor System
Proposal

