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Abstract
Despite oscillator improvements, in order for the Loran-C signal to remain within specifications,
a time difference control (TDC) algorithm must be applied.  Currently TDC is being performed
using a linear least squares algorithm.  This paper explores the use of Kalman filtering as a way
to predict future timing error to determine the optimal phase adjustment to be made.  The use of
a controller consisting of Kalman filter predictions and a discrete linear quadratic regulator
(LQR) to solve for control inputs does not consistently improve system performance.  The
estimate of the states is much better using Kalman filtering compared to least squares.  Using
Kalman filtering with a different controller to solve the cost function (other than LQR) and
further “tuning” the Kalman filter would probably improve system performance.

Introduction
Loran-C is a radionavigation system that enables a position to be calculated based on the time
difference of signal arrival from several towers in a chain.  Each tower provides a parabolic line
of position based on the signals time of arrival.  It is currently used in several applications,
including marine navigation, as a timing source, aeronautical navigation, and in the future
landing of aircraft.  This system has a very high repeatability.  To improve Loran’s performance
this project explores alternate time difference control algorithms.  USCG Loran Support Unit
sponsored this project.

Background
The Loran-C system is set up into chains.  Each chain has a master transmitter and at least two
secondary transmitters.  The master sends out a pulse and each secondary transmits a pulse at a
designated time after the master.  A Loran fix is computed based on the time difference of arrival
(TD) of a master-secondary pair.  Each master-secondary pair TD gives a hyperbolic line of
position.

Currently Loran timing is being controlled by the Loran Consolidated Control System (LCCS).
LCCS receives TD data from monitoring stations.  These monitoring stations are several hundred
miles away from the transmitter.  There are several monitoring stations (also know as PKMS
sights) in every Loran-C chain.  The monitoring station closest to the transmitter is designated
the Alpha 1 monitor.  The next closest monitor is designated Alpha 2.  This provides redundancy
in case of a failure.  LCCS uses the TD data received from the monitoring stations to control the
time difference, and hence the accuracy of Loran.

The TD received would be constant without oscillator drift or atmospheric and other noise.  A
control standard time difference (CSTD) has been established at every monitoring station for
every transmitter monitored by that sight.  Each monitoring site transmitter pair is called a



baseline.  The deviation from the CSTD is the time difference error (TDE).  The cumulative TDE
is a measure of error over time.

To control the system, LCCS monitors the TDE and the cumulative TDE.  When either of these
values are not within tolerances, it sends a local phase adjustment (LPA) to the transmitter.  The
method used to keep Loran within specification is called Loran time difference control (TDC).

There are three competing factors that LCCS takes into account when deciding when and the
amount of LPA to be added in (present TDE, cumulative TDE, and LPA).  The three competing
factors are to keep present TDE within plus and minus one half the tolerance bound (100
nanoseconds) of the CSTD, keep cumulative TDE as close to zero as possible, and minimize the
size and number of LPA’s added.

Controlling TD is a balancing act; there are political, policy, and functionality concerns.  For
example, the Coast Guard has unwritten agreements with the Massachusetts Lobstermen’s
Association to keep cumulative TDE low.  Cumulative TDE effects the repeatability of Loran.
Lobstermen and fishermen want repeatability so that they can mark good fishing spots and find
gear/traps left out.  Navigational users want present TDE to be minimal because that affects
Loran’s absolute accuracy.  Absolute accuracy is how close Loran tells you are compared to
where you actually are.  When you minimize one of these factors you negatively affect the
others.  Minimizing present TDE improves the accuracy, but at the cost of using more LPA’s and
possibly allowing cumulative TDE to drift.  Minimizing cumulative TDE improves the
repeatability, but at the cost of adding more LPA’s and allowing present TDE to drift.
Minimizing the number and size of LPA’s causes users to not see jumps in position, but at the
cost of allowing cumulative and present TDE drift.

Researchers at Naval Postgraduate School Monterey, CA developed a Kalman filter controller
for Loran time difference control.  This research is an extension of that work.

Objective
The goal of this project is to determine the best method to control the accuracy of Loran to meet
and exceed signal specifications while putting in the least number of LPA’s.  Methods that will
be looked at are using no control algorithm, the present controller (LCCS), and using Kalman
filtering.  To accomplish this goal we need to establish a system model for insertion of LPA’s,
remove LCCS’s effects on the stored data, and develop a Kalman filter.

Theory
LCCS estimates future TDE and cumulative TDE values using curve fitting.  To predict future
TDE and cumulative TDE, LCCS reads in 90 minutes of data.  The first 45 minutes are fit to a
third-order polynomial, a linear least squares estimate of TDE.  The midpoint of this polynomial
fitting is the predicted value or present TDE.

Equation 1 is the cost function that LCCS is solving.
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Where 1f  represents the predicted TDE, 2f  represents the cumulative TDE, and 3f  is a similar
function that represents LPA [4].  Based on this prediction the LPA is calculated by substituting
nine different values for LPA (from –80ns to 80ns in 20ns increments) into the cost function.
The LPA that produces the lowest cost is recommended.

In contrast, we are using Kalman filtering to estimate future TDE’s and cumulative TDE’s.  Then
based upon this predicted information, the optimal LPA is found using the discrete linear
quadratic regulator solution.

The Kalman filter estimates future states of a system that is affected by noise based on assumed
statistical properties of the noise.  It is a computer algorithm and not really a filter, in the sense
that it does not give a desired frequency response.  The Kalman filter has many advantages.  It is
a recursive algorithm that takes into account all past system information [1].  The filter estimates
future states in the presence of noise even when the exact workings of system being modeled is
unknown.

The Kalman Filter equations model the system being controlled using two equations:

11 ** −− ++= kkkk wUBXAX      (Eq 2)
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Equation 2 is the process equation and Equation 3 is the measurement, or observation equation,
where kX  is the process state matrix (m x 1) at sample time k .  There are m states to the system.
A is a (m x m) matrix that relates kX to 1−kX .  kU  is the system input(s).  B is a (m x 1) matrix
relates kU  to kX . 1−kw  is a (m x 1) matrix that represents the process noise that has as known
covariance structure, kZ  is a (m x 1) measurement vector at time k , H is a (m x m) matrix
giving the noiseless connection between the measurement and the state vector at time k , and kv
is a (m x 1) vector of the measurement noise, assumed to be a white sequence with known
covariance structure and having zero crosscorrelation (independent) with the kw  sequence [1].

The two sets of equations that the Kalman Filter uses to predict states are the time update
equations and the measurement update equations.

The time update equations are:
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Where kK is the Kalman gain.  kX̂ is the estimated state after the measurement (a posteriori),
and −

kX̂  is the a priori (before the measurement) estimate of the state.  The “hat” denotes an
estimate and the “super minus” reminds us that this is our best estimate of the state before using
the measurement at k . Pk is the error covariance matrix. Qk is the process noise covariance, and
Rk is the measurement noise covariance.  These values can change with time, but often they are
assumed to be constant.

The first of the Kalman time update equations (Eq 4) predicts the next state in the absence of a
measurement.  The second Kalman time update equation (Eq 5) updates the P matrix.

The measurement equations are:
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The first measurement update equation computes the Kalman gain (Equation 6). The Kalman
gain is calculated to minimize the mean square error between the actual state and the estimated
state.  The next equation (Equation 7) in the measurement update equations updates the a priori
estimate with a measurement. The final measurement update equation (Equation 8) updates the
error covariance matrix P.

The entire reiterative Kalman filter process is shown in figure 1.
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Now we must make the general Kalman equations specific for Loran time difference control.
The system can be defined using three states the time difference error (TDE), the rate of change
of TDE ( EDT � ), and the cumulative TDE (cum_TDE).  The system input is the local phase
adjustment (LPA).  The process equation becomes:
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(Eq 9)

We make three “measurements”: TDE, average of differences of the past three TDE’s
(diff_TDE) (this helps to smooth the slope between two points that would be large after the
addition of an LPA {20ns/7.5min}), and cumulative TDE.  Present TDE is collected as data; then
cumulative TDE and the TDE difference are calculated from the data point.  The measurement
equation becomes:
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where T is the sampling period, 7.5 minutes.

We determine LPA’s by using the dlqr ( L=dlqr(A,B,Q,R) ) command in MATLAB.  This
function finds L, which minimizes:
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Where:
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and
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Q and R are weighting matrices that indicate the relative cost of X and U.

For our problem
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And the cost function is
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Relating Equation 15 to Equation 13:
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Technical Approach

To test and implement this algorithm, data was gathered from Loran Support Unit and then
processed.  First, the TD data was converted to TDE data.  Next, the effects of LCCS were
removed by removing the LPA’s.  This simulates what would have happened if no controller was
used.  Once this raw data was prepared, a Kalman filter algorithm was developed and then tuned.
The results were then analyzed.

TD data was extracted from the database at USCG Loran Support Unit for the transmitters in two
different chains (USWC and NOCUS) from 01 February 2001 to 13 March 2001.  The TD data
received was in 10-second samples1.  Since the system is prone to noise, LCCS reads in 45 of
these samples (for a total of 7.5 minutes of data) and then averages them.  Our system does the
same averaging

For LCCS, Cumulative TDE was calculated by inputting 90 minutes of data.  The first 45
minutes was used to “predict” the next 45 minutes of data.  The first 45 minutes of data was put
through a smoothing function and the midpoint of the smoothed function was the TDE value that
was used to update the cumulative TDE.  For the Kalman algorithm, cumulative TDE was
updated using the present TDE.

The receivers at these monitoring stations have recently been replaced (as will all receivers).
They do 60-second averages of real-time data (NOTE: the time spent average can be different for
every baseline).  Figure 2 is a plot of the receiver’s outputted signal’s response to a 20-
nanosecond input.

                                                
1 The data received was TD data given in nanoseconds.  Giving the TD in just nanoseconds assumes that the TD is
the correct CSTD to the tens of nanoseconds.  This assumption was not always correct.  When the TD vector was
plotted, there was discontinuity, in that there were TD points near the x-axis and then another set around 100.  This
shows that the CSTD was assumed to one too many significant figures.  Each data set had to use a different test and
correct program to fix this error.



Figure 2
Note the linear response.  Since it takes six samples (when sampling rate is 10 sec) for the
system to fully respond to the input and the response is linear, each sample is affected
increasingly by 1/6 time the input (until the value reaches 6/6, then 1 time the input for the rest of
the sample).  This response has been modeled when removing LPA’s during unprocessing and
inserting LPA’s during the Kalman simulation.

Results
Searchlight and Baudette alpha-1 baselines were the two data sets used for this analysis. The data
sets consisted of Alpha-1 data from 01FEB01-15MAR01.

Data sets were plotted “as-is.”  These plots are what actually happened with LCCS doing time
difference control (Figures 5-7).  The LPA’s were removed and the data was plotted.  These plots
were what would have happened if no controller was used.  The data after having the LPA’s
removed was then passed to our Kalman filter/LQR controller.  The weighting factors for the
LQR ( 21  and ,, qqRlqr ) were varied to try and produce the best result.

First, let’s take a look at what happens if we used no control algorithm at all.  Figure 3 is a plot
of Searchlight TDE data over the entire 43 days after removal of the LPA’s added in by LCCS.



Figure 3

Clearly the present TDE does not fall within the plus or minus 100ns specifications.  Cumulative
TDE was not plotted because it exponentially decreases and would make the scale of this graph
too small.  Notice the negative trend in the present TDE that could be caused by oscillator drift.
Now let’s look at Baudette with no control (Figure 4).



Figure 4
Notice that there is a general drift upwards.  This could also be due to oscillator drift.  In the
segment beginning at 5500, besides general oscillator drift upward, there is also a drift
downwards. This downward drift could be propagation effects caused by weather since Baudette
is in northern Minnesota and the data is taken during February and March.

Let’s see how LCCS did with controlling time difference (Figures 5-7).

The legend for all plots is:      



The total number of LPAs added is 222

Figure 5

The total number of LPAs added is 175

Figure 6



Due to the spike at sample 1800 (Figure 5),  Searchlight data was only used from sample 1900
on (Figure 6).

Figure 7
LCCS  keeps cumulative TDE within 55 nanoseconds of zero and present TDE within 10
nanoseconds of zero.  The present TDE and cumulative TDE on the Searchlight plots spike on
one day but quickly recover.

The first set of weightings used in the Kalman filter was 2221 20
1q and ,

20
1q  ,1 ===lqrR .

These values were used because LCCS was using values of ki and ks equal to 20.  This weights
the LWR cost function the same as the cost function used by LCCS (Figures 8-9).

The total number of LPAs added is 267



The total number of LPAs added is 161

Figure 8

The total number of LPAs added is 703

Figure 9



For both Searchlight and Baudette, the number of LPA’s added in was slightly lower than LCCS,
but this came with the cost of allowing cumulative TDE to vary greatly (more so than it did
while LCCS was doing control).  The Kalman/LQR controller also allowed TDE to vary greatly
between +20ns and –20ns.  This set of weighting put the highest cost on the number and size of
LPA’s

Let’s apply the same amount of cost to cumulative TDE . The weighting factors are

1q and ,
20
1q  ,

20
1

2212 ===lqrR  (Figure 10).

The total number of LPAs added is 1948

Figure 10

These weighting factors keep cumulative TDE within –60ns to +60 ns.  The trade off is the high
number of LPA’s and some TDE values off by 60ns.  The values were varied to try and come up
with the best solution.

Figure 11 has the scale factors of 2212 20
1q and ,1q  ,

20
1 ===lqrR .  This puts the highest cost

on present TDE.



The total number of LPAs added is 703

Figure 11

Notice that cumulative TDE and the number of LPA’s do not meet specifications.  Present TDE
still varies greatly in the area of 20ns to –20ns.

Several weighting factors were tried.  The best solution that was tried used the weightings of

200
1q and ,

500
1q  ,1 21 ===lqrR .  Figure 12 is Searchlight results.



The total number of LPAs added is 197

Figure 12

The number of LPA’s added is slightly lower than the solution of LCCS and the  present TDE
has about the same response.  Cumulative TDE varies between +150ns and –150ns.  This is
clearly non-optimal performance, but it is the best of the scale factors that were tested.

Cumulative TDE was plotted for Baudette Alpha-2 data (Figure 13).



Figure 13

Notice that the value for cumulative TDE varies from 3500ns to –4000ns.  This shows that we
are only improving the Loran signal at the Alpha-1 monitoring site (the data being used to
control).

Our calculations for cumulative TDE where checked with what LCCS was using.  Figure 14
shows our calculation in magenta and LCCS’s calculation in green.



 
Figure 14

Notice that the two lines have the same shape but our calculation for cumulative TDE is of by as
much as 22 nanoseconds.

Conclusions
As seen by the no control plots (Figures 3-4), Loran still needs to be controlled by some type of
algorithm.  The oscillators at these stations were replaced in September 2000.  These new
oscillators have steering functions.  When they were installed the steering functions were set to
zero.  After looking at February and March 2001 data after LPA’s were removed from the data,
the steering functions should be adjusted accordingly to remove oscillator drift.  The last few
days of Baudette data with no control still do not meet the specification even after you remove
the oscillator drift; thus, even with the steering functions tuned perfectly we will still need a time
difference controller.  This is not to say that we should not try and optimize the steering
functions of the oscillators, because doing so will greatly reduce the number of LPA’s added and
therefore system performance.

The Kalman filter in it present form has not been able to keep present TDE closer than plus or
minus 20ns.  This is not to say that Kalman filtering cannot control present TDE.  Present TDE
performance using Kalman control is much better than using no control (were it drifts by
hundreds of nanoseconds.



Cumulative TDE performance using the present form of the Kalman filter is not superior to
LCCS’s solution.  When no control values are compared to values from the Kalman filter, the
Kalman filter has far superior results.

Even with a perfect estimate of future TDE optimal LPA’s will not be calculated unless the
proper value for the L matrix is found. It appears that the discrete linear quadratic regulator was
unable to do this. There are many different controllers that can be used in place of LQR such as
H-2, H- ∞ , and L-1 norm minimization.  H-2 minimizes the average, which may be good to
control the cumulative TDE. H- ∞  tries to minimize the worst possible case.  This could be good
to control the present TDE. The L-1 tries to minimize the number or size of elements, which may
be a good technique for LPA control.  A thorough investigation that relates modern control
theory to the control policies should be conducted.

Developing new A, B, and H matrices to allow for both alpha-1 and alpha-2 data sets to be used
in TD control.  Alpha-2 data would have to have a small weight factor due to the monitoring
station's “non-optimal” location.  This could help improve over the present system due to what
happens with the cumulative TDE at the Alpha-2 site.  We do not want to just make Loran good
in just one area at the cost of greatly decreasing performance elsewhere.

We were unable to find the optimal weighting factors to make system performance greatly better
than LCCS.  Further “tuning” of the Kalman filter needs to be completed.  With further tuning
and modification the Kalman filter paired with some type of optimal controller (i.e. LQR, H-2,
H- ∞ , or L-1) for LPA recommendations, Loran system performance can greatly be increased.
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